Cargando…

A novel and actual mode for study of soil degradation and transportation of difenoconazole in a mango field

To supply actual data for assessing the potential threat from difenoconazole to the ecosystem, its practical environmental behaviors in a mango field were investigated through a novel mode. After optimization, a UPLC-MS/MS determination method with good accuracy and stability was developed that coul...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Fangfang, Liu, Jingkun, Xie, Defang, Lv, Daizhu, Luo, Jinhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078551/
https://www.ncbi.nlm.nih.gov/pubmed/35539853
http://dx.doi.org/10.1039/c8ra00251g
Descripción
Sumario:To supply actual data for assessing the potential threat from difenoconazole to the ecosystem, its practical environmental behaviors in a mango field were investigated through a novel mode. After optimization, a UPLC-MS/MS determination method with good accuracy and stability was developed that could be used for the residue determination. Difenoconazole residue was in situ sampled, and its degradation and transportation activity, which reflected the actual transfer characteristics in the natural environment, were researched. The results showed that the half-life of difenoconazole in the soil was 15.4 days, which may be accumulated in a year-round agricultural production system. The residue was detected in the rain settled underground, which showed that the residue transported gradually with the rainfall in vertical and horizontal directions. The results showed that difenoconazole would transport with the rainfall, although the process was slow. All the data showed that the soil ecosystem, and probably also the aquatic ecosystem, would be affected by difenoconazole residue.