Cargando…

High sensitivity glucose detection at extremely low concentrations using a MoS(2)-based field-effect transistor

In recent years, molybdenum disulfide (MoS(2)) based field-effect transistors (FETs) have attracted much attention because of the unique properties of MoS(2) nano-materials as an ideal channel material. Using a MoS(2) FET as a glucose solution biosensor has the advantages of high sensitivity and rap...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Junjie, Li, Jinhua, Chu, Xueying, Xu, Mingze, Jin, Fangjun, Wang, Xiaojun, Ma, Li, Fang, Xuan, Wei, Zhipeng, Wang, Xiaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078572/
https://www.ncbi.nlm.nih.gov/pubmed/35541987
http://dx.doi.org/10.1039/c7ra13614e
Descripción
Sumario:In recent years, molybdenum disulfide (MoS(2)) based field-effect transistors (FETs) have attracted much attention because of the unique properties of MoS(2) nano-materials as an ideal channel material. Using a MoS(2) FET as a glucose solution biosensor has the advantages of high sensitivity and rapid response. This paper is concerned with the fabrication of a bilayer MoS(2)-based FET and the study of its application in the high sensitivity detection of an extremely low concentration glucose solution. It was found that the source-drain current (I(ds)) increases as the concentration of the glucose solution increases at the same gate voltage (V(gs)) and drain voltage (V(ds)). The sensitivity of the biosensor as high as 260.75 mA mM(−1) has been calculated and the detection limit of 300 nM was measured. The unknown concentration of a glucose solution was also detected using data based on the relationship between I(ds) and glucose solution concentration. In addition, many significant advantages of the biosensor were observed, such as short response time (<1 s), good stability, wide linear detection range (300 nM to 30 mM) and the micro-detection of glucose solutions. These unique properties make the bilayer MoS(2)-based FET a great potential candidate for next generation biosensors.