Cargando…

UV-curable ladder-like diphenylsiloxane-bridged methacryl-phenyl-siloxane for high power LED encapsulation

A UV curable ladder-like diphenylsiloxane-bridged methacryl-phenyl-siloxane (L-MPS) was synthesized from phenyltrichlorosilane, diphenylsilanediol and methacryloxypropyldimethylmethoxysilane via dehydrochlorination precoupling, supramolecular architecture-directed hydrolysis-condensation and end-cap...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, X. X., Duan, S., Zhang, M., Cao, X. Y., Zheng, K., Zhang, J. N., Ma, Y. M., Zhang, R. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078592/
https://www.ncbi.nlm.nih.gov/pubmed/35541877
http://dx.doi.org/10.1039/c8ra00063h
Descripción
Sumario:A UV curable ladder-like diphenylsiloxane-bridged methacryl-phenyl-siloxane (L-MPS) was synthesized from phenyltrichlorosilane, diphenylsilanediol and methacryloxypropyldimethylmethoxysilane via dehydrochlorination precoupling, supramolecular architecture-directed hydrolysis-condensation and end-capping reactions. The L-MPS has a condensation degree of ∼100%, and can be complete crosslinked by UV curing. XRD, TEM and molecular simulation suggest that the ladder-like molecules are close packed with a periodic distance of ca. 1.2 nm. The L-MPS shows transmittance of 98% and a refractive index of ca. 1.61 at 450 nm. The cured L-MPS with a T(d5%) value of 465.5 °C showed excellent anti-yellowing and anti-sulfidation properties. The cured L-MPS film and the encapsulated LED samples were compared with those of Dow Corning OE-6630 and OE-7662. It is believed that the dense nano-ladder unit also contributes to the thermal, gas barrier and even optical properties. L-MPS shows promising potential as a high power LED encapsulant and optical coating for use in harsh environments. This work provides an approach to integrate this novel ladder structure with advanced properties.