Cargando…

Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation

Stable and highly conductive self-n-doped fullerene ammonium halides are promising optoelectronic materials. It is necessary to thoroughly understand their structure–function relationship and to develop their applications. Here, the assembly behaviors of the self-n-doped fullerene ammonium halides,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, H. H., Sun, X., Lin, Z. C., Pang, Z. F., Kong, X. Q., Lei, M., Li, Y. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078672/
https://www.ncbi.nlm.nih.gov/pubmed/35541847
http://dx.doi.org/10.1039/c8ra00100f
_version_ 1784702386731745280
author Wang, H. H.
Sun, X.
Lin, Z. C.
Pang, Z. F.
Kong, X. Q.
Lei, M.
Li, Y. F.
author_facet Wang, H. H.
Sun, X.
Lin, Z. C.
Pang, Z. F.
Kong, X. Q.
Lei, M.
Li, Y. F.
author_sort Wang, H. H.
collection PubMed
description Stable and highly conductive self-n-doped fullerene ammonium halides are promising optoelectronic materials. It is necessary to thoroughly understand their structure–function relationship and to develop their applications. Here, the assembly behaviors of the self-n-doped fullerene ammonium halides, as well as the functional areas in the well-developed 2D–3D lamellar structures in their ordered aggregates are systematically characterized using comprehensive methods. In the self-assembly, the solvation effect of DMSO promotes the flexibility of side-chains and drives the formation of fullerene ammonium halides into ordered bilayer structures. The conductivity-active area, which contains tightly packed halide anions sandwiched between fullerenes, provides good electron transfer property. Remarkably, residual DMSO in the side-chain area can induce aqueous Pd precursor into the highly conductive framework. After reduction, Pd nanoparticles are immobilized in the confined spaces within the conductive support. The resulting electrode can be used to electrooxidize ethanol. This study provides a facile solution strategy for the in situ fabrication of electrocatalysts on working electrodes, which can be applied in direct alcohol fuel cells.
format Online
Article
Text
id pubmed-9078672
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90786722022-05-09 Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation Wang, H. H. Sun, X. Lin, Z. C. Pang, Z. F. Kong, X. Q. Lei, M. Li, Y. F. RSC Adv Chemistry Stable and highly conductive self-n-doped fullerene ammonium halides are promising optoelectronic materials. It is necessary to thoroughly understand their structure–function relationship and to develop their applications. Here, the assembly behaviors of the self-n-doped fullerene ammonium halides, as well as the functional areas in the well-developed 2D–3D lamellar structures in their ordered aggregates are systematically characterized using comprehensive methods. In the self-assembly, the solvation effect of DMSO promotes the flexibility of side-chains and drives the formation of fullerene ammonium halides into ordered bilayer structures. The conductivity-active area, which contains tightly packed halide anions sandwiched between fullerenes, provides good electron transfer property. Remarkably, residual DMSO in the side-chain area can induce aqueous Pd precursor into the highly conductive framework. After reduction, Pd nanoparticles are immobilized in the confined spaces within the conductive support. The resulting electrode can be used to electrooxidize ethanol. This study provides a facile solution strategy for the in situ fabrication of electrocatalysts on working electrodes, which can be applied in direct alcohol fuel cells. The Royal Society of Chemistry 2018-03-06 /pmc/articles/PMC9078672/ /pubmed/35541847 http://dx.doi.org/10.1039/c8ra00100f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Wang, H. H.
Sun, X.
Lin, Z. C.
Pang, Z. F.
Kong, X. Q.
Lei, M.
Li, Y. F.
Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title_full Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title_fullStr Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title_full_unstemmed Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title_short Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
title_sort self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078672/
https://www.ncbi.nlm.nih.gov/pubmed/35541847
http://dx.doi.org/10.1039/c8ra00100f
work_keys_str_mv AT wanghh selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT sunx selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT linzc selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT pangzf selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT kongxq selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT leim selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation
AT liyf selfassemblyofhighlyconductiveselfndopedfullereneammoniumhalidesandtheirapplicationintheinsitusolutionprocessablefabricationofworkingelectrodesforalcoholelectrooxidation