Cargando…
Computational Intelligence for Observation and Monitoring: A Case Study of Imbalanced Hyperspectral Image Data Classification
Imbalance in hyperspectral images creates a crisis in its analysis and classification operation. Resampling techniques are utilized to minimize the data imbalance. Although only a limited number of resampling methods were explored in the previous research, a small quantity of work has been done. In...
Autores principales: | Datta, Debaleena, Mallick, Pradeep Kumar, Shafi, Jana, Choi, Jaeyoung, Ijaz, Muhammad Fazal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078766/ https://www.ncbi.nlm.nih.gov/pubmed/35535180 http://dx.doi.org/10.1155/2022/8735201 |
Ejemplares similares
-
Hyperspectral Image Classification: Potentials, Challenges, and Future Directions
por: Datta, Debaleena, et al.
Publicado: (2022) -
A Complete Process of Text Classification System Using State-of-the-Art NLP Models
por: Dogra, Varun, et al.
Publicado: (2022) -
A Robust Context-Based Deep Learning Approach for Highly Imbalanced Hyperspectral Classification
por: Ramirez Rochac, Juan F., et al.
Publicado: (2021) -
Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques
por: Kumar, Vinod, et al.
Publicado: (2022) -
A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification
por: Mandal, Moumita, et al.
Publicado: (2021)