Cargando…
Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob
Saccharification of lignocellulose is a necessary procedure for deconstructing the complex structure for building a sugar platform that can be used for producing biofuel and high-value chemicals. In this study, a carbon-based solid acid catalyst derived from sodium lignosulfonate, a waste by-product...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078951/ https://www.ncbi.nlm.nih.gov/pubmed/35541561 http://dx.doi.org/10.1039/c7ra13362f |
_version_ | 1784702453092974592 |
---|---|
author | Li, Xun Shu, Fengyao He, Chao Liu, Shuna Leksawasdi, Noppol Wang, Qiong Qi, Wei Alam, Md. Asraful Yuan, Zhenhong Gao, Yi |
author_facet | Li, Xun Shu, Fengyao He, Chao Liu, Shuna Leksawasdi, Noppol Wang, Qiong Qi, Wei Alam, Md. Asraful Yuan, Zhenhong Gao, Yi |
author_sort | Li, Xun |
collection | PubMed |
description | Saccharification of lignocellulose is a necessary procedure for deconstructing the complex structure for building a sugar platform that can be used for producing biofuel and high-value chemicals. In this study, a carbon-based solid acid catalyst derived from sodium lignosulfonate, a waste by-product from the paper industry, was successfully prepared and used for the hydrolysis of hemicellulose in corncob. The optimum preparation conditions for the catalyst were determined to be carbonization at 250 °C for 6 h, followed by sulfonation with concentrated H(2)SO(4) (98%) and oxidation with 10% H(2)O(2) (solid–liquid ratio of 1 : 75 g mL(−1)) at 50 °C for 90 min. SEM, XRD, FT-IR, elemental analysis and acid–base titration were used for the characterization of the catalysts. It was found that 0.68 mmol g(−1) SO(3)H and 4.78 mmol g(−1) total acid were loaded onto the catalyst. When corncob was hydrolyzed by this catalyst at 130 °C for 12 h, the catalyst exhibited high selectivity and produced a relatively high xylose yield of up to 84.2% (w/w) with a few by-products. Under these conditions, the retention rate of cellulose was 82.5%, and the selectivity reached 86.75%. After 5 cycles of reuse, the catalyst still showed high catalytic activity, with slightly decreased yields of xylose from 84.2% to 70.7%. |
format | Online Article Text |
id | pubmed-9078951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90789512022-05-09 Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob Li, Xun Shu, Fengyao He, Chao Liu, Shuna Leksawasdi, Noppol Wang, Qiong Qi, Wei Alam, Md. Asraful Yuan, Zhenhong Gao, Yi RSC Adv Chemistry Saccharification of lignocellulose is a necessary procedure for deconstructing the complex structure for building a sugar platform that can be used for producing biofuel and high-value chemicals. In this study, a carbon-based solid acid catalyst derived from sodium lignosulfonate, a waste by-product from the paper industry, was successfully prepared and used for the hydrolysis of hemicellulose in corncob. The optimum preparation conditions for the catalyst were determined to be carbonization at 250 °C for 6 h, followed by sulfonation with concentrated H(2)SO(4) (98%) and oxidation with 10% H(2)O(2) (solid–liquid ratio of 1 : 75 g mL(−1)) at 50 °C for 90 min. SEM, XRD, FT-IR, elemental analysis and acid–base titration were used for the characterization of the catalysts. It was found that 0.68 mmol g(−1) SO(3)H and 4.78 mmol g(−1) total acid were loaded onto the catalyst. When corncob was hydrolyzed by this catalyst at 130 °C for 12 h, the catalyst exhibited high selectivity and produced a relatively high xylose yield of up to 84.2% (w/w) with a few by-products. Under these conditions, the retention rate of cellulose was 82.5%, and the selectivity reached 86.75%. After 5 cycles of reuse, the catalyst still showed high catalytic activity, with slightly decreased yields of xylose from 84.2% to 70.7%. The Royal Society of Chemistry 2018-03-19 /pmc/articles/PMC9078951/ /pubmed/35541561 http://dx.doi.org/10.1039/c7ra13362f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Li, Xun Shu, Fengyao He, Chao Liu, Shuna Leksawasdi, Noppol Wang, Qiong Qi, Wei Alam, Md. Asraful Yuan, Zhenhong Gao, Yi Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title | Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title_full | Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title_fullStr | Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title_full_unstemmed | Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title_short | Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
title_sort | preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078951/ https://www.ncbi.nlm.nih.gov/pubmed/35541561 http://dx.doi.org/10.1039/c7ra13362f |
work_keys_str_mv | AT lixun preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT shufengyao preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT hechao preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT liushuna preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT leksawasdinoppol preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT wangqiong preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT qiwei preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT alammdasraful preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT yuanzhenhong preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob AT gaoyi preparationandinvestigationofhighlyselectivesolidacidcatalystswithsodiumlignosulfonateforhydrolysisofhemicelluloseincorncob |