Cargando…
Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane
In this study, micropatterning of a blue light emitting, tetraphenylsilane-based phosphorescent material by inkjet printing was investigated. Bis(3,5-di(9H-carbazol-9-yl))diphenylsilane (SimCP2) doped with iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) was dissolved in a solvent mixture,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078968/ https://www.ncbi.nlm.nih.gov/pubmed/35541513 http://dx.doi.org/10.1039/c8ra00582f |
_version_ | 1784702457121603584 |
---|---|
author | Bail, Robert Hong, Ji Yoon Chin, Byung Doo |
author_facet | Bail, Robert Hong, Ji Yoon Chin, Byung Doo |
author_sort | Bail, Robert |
collection | PubMed |
description | In this study, micropatterning of a blue light emitting, tetraphenylsilane-based phosphorescent material by inkjet printing was investigated. Bis(3,5-di(9H-carbazol-9-yl))diphenylsilane (SimCP2) doped with iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) was dissolved in a solvent mixture, and various conditions for the solvent composition and drying of films were examined. Homogeneous dot and line patterns with controllable thickness and smooth surface were obtained from a mixture of chlorobenzene and cyclohexanone at a moderate printing speed of 3 mm s(−1) and a droplet ejection frequency of 70 Hz. An inkjet-printed device was designed and fabricated in [ITO/PEDOT:PSS /PVK/SimCP2:Flrpic/TSPO1/TPBi/LiF/Al] configuration, from which sky-blue light (0.14, 0.25) was obtained with a luminous efficiency of 10.73 cd A(−1) and a power efficiency of 6.13 lm W(−1). This amounted to 68% of the performance of an identical device where the emitting layer was spin coated. These results show the potential of inkjet printing as a low-cost patterning method for low molecular weight emitters in blue light emitting devices. |
format | Online Article Text |
id | pubmed-9078968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90789682022-05-09 Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane Bail, Robert Hong, Ji Yoon Chin, Byung Doo RSC Adv Chemistry In this study, micropatterning of a blue light emitting, tetraphenylsilane-based phosphorescent material by inkjet printing was investigated. Bis(3,5-di(9H-carbazol-9-yl))diphenylsilane (SimCP2) doped with iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) was dissolved in a solvent mixture, and various conditions for the solvent composition and drying of films were examined. Homogeneous dot and line patterns with controllable thickness and smooth surface were obtained from a mixture of chlorobenzene and cyclohexanone at a moderate printing speed of 3 mm s(−1) and a droplet ejection frequency of 70 Hz. An inkjet-printed device was designed and fabricated in [ITO/PEDOT:PSS /PVK/SimCP2:Flrpic/TSPO1/TPBi/LiF/Al] configuration, from which sky-blue light (0.14, 0.25) was obtained with a luminous efficiency of 10.73 cd A(−1) and a power efficiency of 6.13 lm W(−1). This amounted to 68% of the performance of an identical device where the emitting layer was spin coated. These results show the potential of inkjet printing as a low-cost patterning method for low molecular weight emitters in blue light emitting devices. The Royal Society of Chemistry 2018-03-20 /pmc/articles/PMC9078968/ /pubmed/35541513 http://dx.doi.org/10.1039/c8ra00582f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Bail, Robert Hong, Ji Yoon Chin, Byung Doo Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title_full | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title_fullStr | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title_full_unstemmed | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title_short | Inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9H-carbazol-9-yl))diphenylsilane |
title_sort | inkjet printing of blue phosphorescent light-emitting layer based on bis(3,5-di(9h-carbazol-9-yl))diphenylsilane |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9078968/ https://www.ncbi.nlm.nih.gov/pubmed/35541513 http://dx.doi.org/10.1039/c8ra00582f |
work_keys_str_mv | AT bailrobert inkjetprintingofbluephosphorescentlightemittinglayerbasedonbis35di9hcarbazol9yldiphenylsilane AT hongjiyoon inkjetprintingofbluephosphorescentlightemittinglayerbasedonbis35di9hcarbazol9yldiphenylsilane AT chinbyungdoo inkjetprintingofbluephosphorescentlightemittinglayerbasedonbis35di9hcarbazol9yldiphenylsilane |