Cargando…
Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties
Due to the chemical inertness of the basalt fiber (BF) surface, the weaker interfacial bonding between BF and polymer matrices will seriously affect the further application of basalt fiber enhanced composites. In this study, a continuous and compact graphene oxide (GO) layer was grafted onto the sur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079273/ https://www.ncbi.nlm.nih.gov/pubmed/35539405 http://dx.doi.org/10.1039/c8ra00106e |
_version_ | 1784702526909579264 |
---|---|
author | Wang, Junjie Zhou, Shaofeng Huang, Jin Zhao, Guizhe Liu, Yaqing |
author_facet | Wang, Junjie Zhou, Shaofeng Huang, Jin Zhao, Guizhe Liu, Yaqing |
author_sort | Wang, Junjie |
collection | PubMed |
description | Due to the chemical inertness of the basalt fiber (BF) surface, the weaker interfacial bonding between BF and polymer matrices will seriously affect the further application of basalt fiber enhanced composites. In this study, a continuous and compact graphene oxide (GO) layer was grafted onto the surface of basalt fiber (BF) using biomimetic polydopamine (PDA) as a bridge to improve the mechanical and tribological properties of polyamide 6. The impact and flexural strength of the PA6 composites filled by the GO grafting BF (GO–PDA–BF/PA6) indicated that the introduction of GO has made a larger improvement in interface bonding performance between BF and PA6 matrix. The friction and wear tests showed the wear rate of the GO–PDA–BF/PA6 composite decreased by 51% compared with BF/PA6 composites and it also showed the best wear resistance and load-carrying capacity under various applied loads and sliding speeds, explained by the improved interface bonding between GO–PDA–BF and PA6 matrix and the anti-wear protective transfer film formed by GO in the worn surface. This study provided a considerable flexibility strategy of tailoring the interfacial compatibility between reinforcement and matrix for effectively improving the comprehensive performance of composites. |
format | Online Article Text |
id | pubmed-9079273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90792732022-05-09 Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties Wang, Junjie Zhou, Shaofeng Huang, Jin Zhao, Guizhe Liu, Yaqing RSC Adv Chemistry Due to the chemical inertness of the basalt fiber (BF) surface, the weaker interfacial bonding between BF and polymer matrices will seriously affect the further application of basalt fiber enhanced composites. In this study, a continuous and compact graphene oxide (GO) layer was grafted onto the surface of basalt fiber (BF) using biomimetic polydopamine (PDA) as a bridge to improve the mechanical and tribological properties of polyamide 6. The impact and flexural strength of the PA6 composites filled by the GO grafting BF (GO–PDA–BF/PA6) indicated that the introduction of GO has made a larger improvement in interface bonding performance between BF and PA6 matrix. The friction and wear tests showed the wear rate of the GO–PDA–BF/PA6 composite decreased by 51% compared with BF/PA6 composites and it also showed the best wear resistance and load-carrying capacity under various applied loads and sliding speeds, explained by the improved interface bonding between GO–PDA–BF and PA6 matrix and the anti-wear protective transfer film formed by GO in the worn surface. This study provided a considerable flexibility strategy of tailoring the interfacial compatibility between reinforcement and matrix for effectively improving the comprehensive performance of composites. The Royal Society of Chemistry 2018-03-29 /pmc/articles/PMC9079273/ /pubmed/35539405 http://dx.doi.org/10.1039/c8ra00106e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Wang, Junjie Zhou, Shaofeng Huang, Jin Zhao, Guizhe Liu, Yaqing Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title | Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title_full | Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title_fullStr | Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title_full_unstemmed | Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title_short | Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
title_sort | interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079273/ https://www.ncbi.nlm.nih.gov/pubmed/35539405 http://dx.doi.org/10.1039/c8ra00106e |
work_keys_str_mv | AT wangjunjie interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties AT zhoushaofeng interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties AT huangjin interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties AT zhaoguizhe interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties AT liuyaqing interfacialmodificationofbasaltfiberfillingcompositeswithgrapheneoxideandpolydopamineforenhancedmechanicalandtribologicalproperties |