Cargando…

Bio-inspired self-assembly of waxberry-like core-shell SiO(2)@TiO(2) nanoparticles towards antiglare coatings

Waxberry-like core–shell SiO(2)@TiO(2) nanoparticles were prepared by liquid-phase deposition (LPD) method. The dip-coating self-assembly of waxberry-like core–shell SiO(2)@TiO(2) nanoparticles has been used to fabricate coatings with excellent antiglare properties in the large angle and wide wavele...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Mingli, Sun, Aihua, Chu, Chengyi, Chen, Tao, Yu, Chengbing, Wang, Biao, Guo, Jianjun, Xu, Gaojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079280/
https://www.ncbi.nlm.nih.gov/pubmed/35539387
http://dx.doi.org/10.1039/c8ra00775f
Descripción
Sumario:Waxberry-like core–shell SiO(2)@TiO(2) nanoparticles were prepared by liquid-phase deposition (LPD) method. The dip-coating self-assembly of waxberry-like core–shell SiO(2)@TiO(2) nanoparticles has been used to fabricate coatings with excellent antiglare properties in the large angle and wide wavelength range. The field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements showed that the surface of SiO(2) nanoparticles were coated by titania as a shell with controllable and uniform thickness. The ultraviolet visible near-infrared spectrophotometer (UV-Vis-NIR) results indicate that the maximum transmittance of the antiglare coating is up to 95.80% in the visible band, whereas that of the pure glass substrate is only 92.10%. The scattering and haze of the films have been measured to show that such specifically structured coatings exhibited good antiglare properties in the large angle and wide wavelength range.