Cargando…
A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine
A facile one-pot and green method was developed to prepare a nanocomposite of gold nanoparticle (AuNP), graphene (GP) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Graphene was first electro-exfoliated in a polystyrene sulfonate solution, followed by a one-step simultaneous...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079364/ https://www.ncbi.nlm.nih.gov/pubmed/35541276 http://dx.doi.org/10.1039/c8ra01564c |
_version_ | 1784702548344569856 |
---|---|
author | Pananon, Paweena Sriprachuabwong, Chakrit Wisitsoraat, Anurat Chuysinuan, Piyachat Tuantranont, Adisorn Saparpakorn, Patchareenart Dechtrirat, Decha |
author_facet | Pananon, Paweena Sriprachuabwong, Chakrit Wisitsoraat, Anurat Chuysinuan, Piyachat Tuantranont, Adisorn Saparpakorn, Patchareenart Dechtrirat, Decha |
author_sort | Pananon, Paweena |
collection | PubMed |
description | A facile one-pot and green method was developed to prepare a nanocomposite of gold nanoparticle (AuNP), graphene (GP) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Graphene was first electro-exfoliated in a polystyrene sulfonate solution, followed by a one-step simultaneous in situ formation of gold nanoparticle and PEDOT. The as-synthesized aqueous dispersion of AuNP-GP-PEDOT:PSS was thereafter used to modify the glassy carbon electrode (GCE). For the first time, the quaternary composite between AuNP, GP, PEDOT and PSS was used for selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison to a bare GCE, the nanocomposite electrode shows considerably higher electrocatalytic activities toward the oxidation of DA and UA due to a synergistic effect between AuNP, GP, PEDOT and PSS. Using differential pulse voltammetry (DPV), selective determination of DA and UA in the presence of AA could be achieved with a peak potential separation of 110 mV between DA and UA. The sensor exhibits wide linear responses for DA and UA in the ranges of 1 nM to 300 μM and 10 μM to 1 mM with detection limits (S/N = 3) of 100 pM and 10 μM, respectively. Furthermore, the proposed sensor was also successfully used to determine DA in a real pharmaceutical injection sample as well as DA and UA in human serum with satisfactory recovery results. |
format | Online Article Text |
id | pubmed-9079364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90793642022-05-09 A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine Pananon, Paweena Sriprachuabwong, Chakrit Wisitsoraat, Anurat Chuysinuan, Piyachat Tuantranont, Adisorn Saparpakorn, Patchareenart Dechtrirat, Decha RSC Adv Chemistry A facile one-pot and green method was developed to prepare a nanocomposite of gold nanoparticle (AuNP), graphene (GP) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Graphene was first electro-exfoliated in a polystyrene sulfonate solution, followed by a one-step simultaneous in situ formation of gold nanoparticle and PEDOT. The as-synthesized aqueous dispersion of AuNP-GP-PEDOT:PSS was thereafter used to modify the glassy carbon electrode (GCE). For the first time, the quaternary composite between AuNP, GP, PEDOT and PSS was used for selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison to a bare GCE, the nanocomposite electrode shows considerably higher electrocatalytic activities toward the oxidation of DA and UA due to a synergistic effect between AuNP, GP, PEDOT and PSS. Using differential pulse voltammetry (DPV), selective determination of DA and UA in the presence of AA could be achieved with a peak potential separation of 110 mV between DA and UA. The sensor exhibits wide linear responses for DA and UA in the ranges of 1 nM to 300 μM and 10 μM to 1 mM with detection limits (S/N = 3) of 100 pM and 10 μM, respectively. Furthermore, the proposed sensor was also successfully used to determine DA in a real pharmaceutical injection sample as well as DA and UA in human serum with satisfactory recovery results. The Royal Society of Chemistry 2018-04-03 /pmc/articles/PMC9079364/ /pubmed/35541276 http://dx.doi.org/10.1039/c8ra01564c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Pananon, Paweena Sriprachuabwong, Chakrit Wisitsoraat, Anurat Chuysinuan, Piyachat Tuantranont, Adisorn Saparpakorn, Patchareenart Dechtrirat, Decha A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title | A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title_full | A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title_fullStr | A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title_full_unstemmed | A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title_short | A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine |
title_sort | facile one-pot green synthesis of gold nanoparticle-graphene-pedot:pss nanocomposite for selective electrochemical detection of dopamine |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079364/ https://www.ncbi.nlm.nih.gov/pubmed/35541276 http://dx.doi.org/10.1039/c8ra01564c |
work_keys_str_mv | AT pananonpaweena afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT sriprachuabwongchakrit afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT wisitsoraatanurat afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT chuysinuanpiyachat afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT tuantranontadisorn afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT saparpakornpatchareenart afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT dechtriratdecha afacileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT pananonpaweena facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT sriprachuabwongchakrit facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT wisitsoraatanurat facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT chuysinuanpiyachat facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT tuantranontadisorn facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT saparpakornpatchareenart facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine AT dechtriratdecha facileonepotgreensynthesisofgoldnanoparticlegraphenepedotpssnanocompositeforselectiveelectrochemicaldetectionofdopamine |