Cargando…

Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO(2) nanotube arrays as a high performance supercapacitor electrode

An organic–inorganic coaxial-structured hybrid of PPy/EH-TNTAs electrode with outstanding supercapacitive performance was developed by incorporating electroactive polypyrrole (PPy) into a highly-conductive TiO(2) substrate, namely, electrochemically hydrogenated TiO(2) nanotube arrays (EH-TNTAs) thr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jiaqin, Li, Jingwei, Dai, Mengjia, Hu, Ying, Cui, Jiewu, Wang, Yan, Tan, Hark Hoe, Wu, Yucheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079746/
https://www.ncbi.nlm.nih.gov/pubmed/35542528
http://dx.doi.org/10.1039/c7ra13166f
Descripción
Sumario:An organic–inorganic coaxial-structured hybrid of PPy/EH-TNTAs electrode with outstanding supercapacitive performance was developed by incorporating electroactive polypyrrole (PPy) into a highly-conductive TiO(2) substrate, namely, electrochemically hydrogenated TiO(2) nanotube arrays (EH-TNTAs) through a photo-assisted potentiodynamic electrodeposition route. The as-fabricated PPy/EH-TNTAs hybrid electrode achieves a specific capacitance of up to 614.7 F g(−1) at 1.0 A g(−1) with 87.4% of the initial capacitance remaining after 5000 cycles at 10 A g(−1), outperforming other fabricated PPy-TNTAs hybrid electrodes. The photoelectrodeposited and electrodeposited hybrid samples as well as the EH-TNTAs-based and air–TNTAs-based hybrid samples were fully compared from electropolymerization process, morphology, structural feature and electrochemical perspectives. The results indicate that the synergy of remarkably improved conductivity and electrochemical properties of the TiO(2) substrate induced by intentionally introduced Ti(3+) (O-vacancies) as well as the homogenous and integrated deposition of PPy triggered by light illumination enabled the outstanding supercapacitive performance of the PPy/EH-TNTAs hybrid electrode. A symmetric supercapacitor device was assembled using the PPy/EH-TNTAs hybrid as both a positive and negative electrode, respectively. It displays a high energy density of 17.7 W h kg(−1) at a power density of 1257 W kg(−1). This organic–inorganic coaxial-structured PPy/EH-TNTAs electrode will be a competitive and promising candidate for application in future energy storage devices.