Cargando…
High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition
Fast and effective detecting of flammable and explosive gases in harsh environments (high temperature, corrosion atmosphere) is crucial for preventing severe accidents for the chemical industry, fuel cell applications and engine tests. Silicon carbide material is reported to be a good candidate for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079785/ https://www.ncbi.nlm.nih.gov/pubmed/35539358 http://dx.doi.org/10.1039/c8ra02164c |
_version_ | 1784702633418686464 |
---|---|
author | Sun, Lian Han, Cheng Wu, Nan Wang, Bing Wang, Yingde |
author_facet | Sun, Lian Han, Cheng Wu, Nan Wang, Bing Wang, Yingde |
author_sort | Sun, Lian |
collection | PubMed |
description | Fast and effective detecting of flammable and explosive gases in harsh environments (high temperature, corrosion atmosphere) is crucial for preventing severe accidents for the chemical industry, fuel cell applications and engine tests. Silicon carbide material is reported to be a good candidate for gas sensing devices applied in extreme conditions. Herein, high-temperature available silicon carbide nanosheets (SiC NSs) were synthesized from graphene oxide (GO) via a catalyst-free carbothermal method. The structure and composition of SiC NSs under different reaction conditions are carefully characterized. The received SiC NSs were firstly utilized as gas sensing materials for hazardous gases (acetone, ethanol, methanol and ammonia) at a high temperature (500 °C). Importantly, the SiC NSs sensors exhibited a fast response (8–39 s) and recovery (12–69 s) towards detecting gases. Besides, an n–p conductivity transition phenomenon is found and studied. This paper firstly proves that such SiC NSs has the potential to be used in gas sensing fields. |
format | Online Article Text |
id | pubmed-9079785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90797852022-05-09 High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition Sun, Lian Han, Cheng Wu, Nan Wang, Bing Wang, Yingde RSC Adv Chemistry Fast and effective detecting of flammable and explosive gases in harsh environments (high temperature, corrosion atmosphere) is crucial for preventing severe accidents for the chemical industry, fuel cell applications and engine tests. Silicon carbide material is reported to be a good candidate for gas sensing devices applied in extreme conditions. Herein, high-temperature available silicon carbide nanosheets (SiC NSs) were synthesized from graphene oxide (GO) via a catalyst-free carbothermal method. The structure and composition of SiC NSs under different reaction conditions are carefully characterized. The received SiC NSs were firstly utilized as gas sensing materials for hazardous gases (acetone, ethanol, methanol and ammonia) at a high temperature (500 °C). Importantly, the SiC NSs sensors exhibited a fast response (8–39 s) and recovery (12–69 s) towards detecting gases. Besides, an n–p conductivity transition phenomenon is found and studied. This paper firstly proves that such SiC NSs has the potential to be used in gas sensing fields. The Royal Society of Chemistry 2018-04-12 /pmc/articles/PMC9079785/ /pubmed/35539358 http://dx.doi.org/10.1039/c8ra02164c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Sun, Lian Han, Cheng Wu, Nan Wang, Bing Wang, Yingde High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title | High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title_full | High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title_fullStr | High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title_full_unstemmed | High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title_short | High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
title_sort | high temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079785/ https://www.ncbi.nlm.nih.gov/pubmed/35539358 http://dx.doi.org/10.1039/c8ra02164c |
work_keys_str_mv | AT sunlian hightemperaturegassensingperformancesofsiliconcarbidenanosheetswithannpconductivitytransition AT hancheng hightemperaturegassensingperformancesofsiliconcarbidenanosheetswithannpconductivitytransition AT wunan hightemperaturegassensingperformancesofsiliconcarbidenanosheetswithannpconductivitytransition AT wangbing hightemperaturegassensingperformancesofsiliconcarbidenanosheetswithannpconductivitytransition AT wangyingde hightemperaturegassensingperformancesofsiliconcarbidenanosheetswithannpconductivitytransition |