Cargando…

Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching

Well-defined thermally polymerizable hyperbranched polymers (TPA–BZs) containing various numbers of triphenylamine (TPA) and benzoxazine (BZ) units have been prepared using a “click-like” reaction concept, through one-pot Mannich condensations of 4-(bis(4-aminophenyl)amino)phenol (TPA–2NH(2)–OH, as...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Ruey-Chorng, Kuo, Shiao-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079809/
https://www.ncbi.nlm.nih.gov/pubmed/35542500
http://dx.doi.org/10.1039/c8ra00506k
_version_ 1784702639263449088
author Lin, Ruey-Chorng
Kuo, Shiao-Wei
author_facet Lin, Ruey-Chorng
Kuo, Shiao-Wei
author_sort Lin, Ruey-Chorng
collection PubMed
description Well-defined thermally polymerizable hyperbranched polymers (TPA–BZs) containing various numbers of triphenylamine (TPA) and benzoxazine (BZ) units have been prepared using a “click-like” reaction concept, through one-pot Mannich condensations of 4-(bis(4-aminophenyl)amino)phenol (TPA–2NH(2)–OH, as the AB(2) branching groups), aniline (as the focal groups), CH(2)O, and phenol in 1,4-dioxane, with a unique feeding approach. Two design strategies for the chemical construction were applied: (i) simple hyperbranched TPA–BZs, such as those containing one or three TPA units, developed from the focal or the terminal group direction to form the resultant monomers; (ii) three dendritic TPA–BZs containing four TPA units possessing different degrees of branching (DBs) for the conformation study. The exothermic temperature for the dendritic TPA–BZs decreased upon increasing the DB. The bathochromic shifts of the dendritic TPA–BZs increased upon increasing the number of TPA units, in UV-Vis absorption and PL emission spectra, presumably because of an increase in the effective conjugation length. In addition, the polymerized dendritic TPA–BZ DG1 possessed thermal properties superior to those of the hyperbranched TPA–BZ polybenzoxazines, possibly because the segmental mobility in the polymer network was restricted by the dendrimer core group and because of its symmetrical construction. The hyperbranched TPA–BZ possessed unique photophysical properties, suggesting potential applications in optoelectronic devices.
format Online
Article
Text
id pubmed-9079809
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90798092022-05-09 Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching Lin, Ruey-Chorng Kuo, Shiao-Wei RSC Adv Chemistry Well-defined thermally polymerizable hyperbranched polymers (TPA–BZs) containing various numbers of triphenylamine (TPA) and benzoxazine (BZ) units have been prepared using a “click-like” reaction concept, through one-pot Mannich condensations of 4-(bis(4-aminophenyl)amino)phenol (TPA–2NH(2)–OH, as the AB(2) branching groups), aniline (as the focal groups), CH(2)O, and phenol in 1,4-dioxane, with a unique feeding approach. Two design strategies for the chemical construction were applied: (i) simple hyperbranched TPA–BZs, such as those containing one or three TPA units, developed from the focal or the terminal group direction to form the resultant monomers; (ii) three dendritic TPA–BZs containing four TPA units possessing different degrees of branching (DBs) for the conformation study. The exothermic temperature for the dendritic TPA–BZs decreased upon increasing the DB. The bathochromic shifts of the dendritic TPA–BZs increased upon increasing the number of TPA units, in UV-Vis absorption and PL emission spectra, presumably because of an increase in the effective conjugation length. In addition, the polymerized dendritic TPA–BZ DG1 possessed thermal properties superior to those of the hyperbranched TPA–BZ polybenzoxazines, possibly because the segmental mobility in the polymer network was restricted by the dendrimer core group and because of its symmetrical construction. The hyperbranched TPA–BZ possessed unique photophysical properties, suggesting potential applications in optoelectronic devices. The Royal Society of Chemistry 2018-04-11 /pmc/articles/PMC9079809/ /pubmed/35542500 http://dx.doi.org/10.1039/c8ra00506k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Lin, Ruey-Chorng
Kuo, Shiao-Wei
Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title_full Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title_fullStr Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title_full_unstemmed Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title_short Well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
title_sort well-defined benzoxazine/triphenylamine-based hyperbranched polymers with controlled degree of branching
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079809/
https://www.ncbi.nlm.nih.gov/pubmed/35542500
http://dx.doi.org/10.1039/c8ra00506k
work_keys_str_mv AT linrueychorng welldefinedbenzoxazinetriphenylaminebasedhyperbranchedpolymerswithcontrolleddegreeofbranching
AT kuoshiaowei welldefinedbenzoxazinetriphenylaminebasedhyperbranchedpolymerswithcontrolleddegreeofbranching