Cargando…

Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media

Metal-free carbonaceous catalysts have potential applications for oxygen evolution reaction (OER) devices because of their low-cost and abundant supply. We report that fluorine-doped carbon black is an active catalyst for OER. Fluorine-doped carbon black (F-KB) is simply synthesized by the pyrolysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jeheon, Zhou, Ruifeng, Murakoshi, Kei, Yasuda, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9079933/
https://www.ncbi.nlm.nih.gov/pubmed/35540778
http://dx.doi.org/10.1039/c8ra01636d
Descripción
Sumario:Metal-free carbonaceous catalysts have potential applications for oxygen evolution reaction (OER) devices because of their low-cost and abundant supply. We report that fluorine-doped carbon black is an active catalyst for OER. Fluorine-doped carbon black (F-KB) is simply synthesized by the pyrolysis of KETJENBLACK (KB) as carbon substrate with Nafion as fluorine precursor. As a result, the OER activity of F-KB is significantly higher than that of pristine KB in alkaline media. The OER catalytic activity of F-KB is found to be dependent on the quantity and characteristics of carbon-fluorine bonding (C–F) which can be controlled by the pyrolysis temperature. It is further found that the OER activity depends on the quantity of semi-ionic C–F bonds, but not covalent C–F bonds. This result proves the importance of carbon atoms with semi-ionic C–F bonds as the active sites for OER.