Cargando…
Classification and detection of COVID-19 X-Ray images based on DenseNet and VGG16 feature fusion
Since December 2019, the novel coronavirus disease (COVID-19) caused by the syndrome coronavirus 2 (SARS-CoV-2) strain has spread widely around the world and has become a serious global public health problem. For this high-speed infectious disease, the application of X-ray to chest diagnosis plays a...
Autores principales: | Kong, Lingzhi, Cheng, Jinyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080057/ https://www.ncbi.nlm.nih.gov/pubmed/35573817 http://dx.doi.org/10.1016/j.bspc.2022.103772 |
Ejemplares similares
-
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Coronavirus disease (COVID-19) detection using X-ray images and enhanced DenseNet
por: Albahli, Saleh, et al.
Publicado: (2021) -
Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion
por: Montalbo, Francis Jesmar P.
Publicado: (2021) -
Diagnosis of Coronavirus Disease From Chest X-Ray Images Using DenseNet-169 Architecture
por: Dalvi, Pooja Pradeep, et al.
Publicado: (2023) -
Reverse active learning based atrous DenseNet for pathological image classification
por: Li, Yuexiang, et al.
Publicado: (2019)