Cargando…
Sparse sliced inverse regression for high dimensional data analysis
BACKGROUND: Dimension reduction and variable selection play a critical role in the analysis of contemporary high-dimensional data. The semi-parametric multi-index model often serves as a reasonable model for analysis of such high-dimensional data. The sliced inverse regression (SIR) method, which ca...
Autores principales: | Hilafu, Haileab, Safo, Sandra E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080177/ https://www.ncbi.nlm.nih.gov/pubmed/35525975 http://dx.doi.org/10.1186/s12859-022-04700-3 |
Ejemplares similares
-
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
An objective absence data sampling method for landslide susceptibility mapping
por: Rabby, Yasin Wahid, et al.
Publicado: (2023) -
Analysis of microarray right-censored data through fused sliced inverse regression
por: Yoo, Jae Keun
Publicado: (2019) -
Obtaining insights from high-dimensional data: sparse principal covariates regression
por: Van Deun, Katrijn, et al.
Publicado: (2018) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017)