Cargando…
Diastereoselective synthesis of novel spiro indanone fused pyrano[3,2-c]chromene derivatives following hetero-Diels–Alder reaction and in vitro anticancer studies
The development of concise methods for the synthesis of small functionalised spirocyclic molecules is important in the search of new bioactive molecules. To contribute this, here we represent a diastereoselective oxa-hetero-Diels–Alder reaction for the synthesis of novel spiro indanone fused pyrano[...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080297/ https://www.ncbi.nlm.nih.gov/pubmed/35540554 http://dx.doi.org/10.1039/c8ra02729c |
Sumario: | The development of concise methods for the synthesis of small functionalised spirocyclic molecules is important in the search of new bioactive molecules. To contribute this, here we represent a diastereoselective oxa-hetero-Diels–Alder reaction for the synthesis of novel spiro indanone fused pyrano[3,2-c]chromene derivatives and studied their in vitro anticancer activities. Using previously less explored cyclic ketone i.e. indane-1,3-dione and 3-vinyl-2H-chromene derivatives, we obtained novel spiro-heterocyclic frameworks at the interphase between “drug-like” molecules and natural products. Various spiro indanone fused pyrano[3,2-c]chromene derivatives were synthesized regiospecifically bearing a quaternary stereocenter in high yields (up to 85%) with excellent diastereoselectivity in toluene using 4 Å MS as additive under reflux condition at 120 °C. In vitro cytotoxic studies of these compounds against MCF-7 (breast cancer), HCT-116 (colon cancer), H-357 (oral cancer), MD-MB-231(Breast cancer) cell lines were evaluated by MTT {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide} assay in vitro. The screening results revealed that many of the compounds are showing moderate to high levels of anticancer activities against the tested cancer cell lines and some displayed potent inhibitory activities in comparison to the commercial anticancer drug 5-fluorouracil (5-FU). Among the series, compound 3′c showed most potent cytotoxicity (15.0–27.5 μM) in three cancer cell lines (MCF-7, HCT-116 and MD-MB-231). |
---|