Cargando…

Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries

This study fabricated and demonstrated a functional, stable electrode structure for a high capacity Li-ion battery (LIB) anode. Effective performance is assessed in terms of reversible lithiation for a significant number of charge–discharge cycles to 80% of initial capacity. The materials selected f...

Descripción completa

Detalles Bibliográficos
Autores principales: Loveridge, M. J., Malik, R., Paul, S., Manjunatha, K. N., Gallanti, S., Tan, C., Lain, M., Roberts, A. J., Bhagat, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080329/
https://www.ncbi.nlm.nih.gov/pubmed/35540555
http://dx.doi.org/10.1039/c7ra13489d
_version_ 1784702760307916800
author Loveridge, M. J.
Malik, R.
Paul, S.
Manjunatha, K. N.
Gallanti, S.
Tan, C.
Lain, M.
Roberts, A. J.
Bhagat, R.
author_facet Loveridge, M. J.
Malik, R.
Paul, S.
Manjunatha, K. N.
Gallanti, S.
Tan, C.
Lain, M.
Roberts, A. J.
Bhagat, R.
author_sort Loveridge, M. J.
collection PubMed
description This study fabricated and demonstrated a functional, stable electrode structure for a high capacity Li-ion battery (LIB) anode. Effective performance is assessed in terms of reversible lithiation for a significant number of charge–discharge cycles to 80% of initial capacity. The materials selected for this study are silicon and tin and are co-deposited using an advanced manufacturing technique (plasma-enhanced chemical vapour deposition), shown to be a scalable process that can facilitate film growth on 3D substrates. Uniform and hybrid crystalline–amorphous Si nanowire (SiNW) growth is achieved via a vapour–liquid–solid mechanism using a Sn metal catalyst. SiNWs of less than 300 nm diameter are known to be less susceptible to fracture and when grown this way have direct electrical conductivity to the current collector, with sufficient room for expansion. Electrochemical characterisation shows stable cycling at capacities of 1400 mA h g(−1) (>4 × the capacity limit of graphite). This hybrid system demonstrates promising electrochemical performance, can be grown at large scale and has also been successfully grown on flexible carbon paper current collectors. These findings will have impact on the development of flexible batteries and wearable energy storage.
format Online
Article
Text
id pubmed-9080329
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90803292022-05-09 Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries Loveridge, M. J. Malik, R. Paul, S. Manjunatha, K. N. Gallanti, S. Tan, C. Lain, M. Roberts, A. J. Bhagat, R. RSC Adv Chemistry This study fabricated and demonstrated a functional, stable electrode structure for a high capacity Li-ion battery (LIB) anode. Effective performance is assessed in terms of reversible lithiation for a significant number of charge–discharge cycles to 80% of initial capacity. The materials selected for this study are silicon and tin and are co-deposited using an advanced manufacturing technique (plasma-enhanced chemical vapour deposition), shown to be a scalable process that can facilitate film growth on 3D substrates. Uniform and hybrid crystalline–amorphous Si nanowire (SiNW) growth is achieved via a vapour–liquid–solid mechanism using a Sn metal catalyst. SiNWs of less than 300 nm diameter are known to be less susceptible to fracture and when grown this way have direct electrical conductivity to the current collector, with sufficient room for expansion. Electrochemical characterisation shows stable cycling at capacities of 1400 mA h g(−1) (>4 × the capacity limit of graphite). This hybrid system demonstrates promising electrochemical performance, can be grown at large scale and has also been successfully grown on flexible carbon paper current collectors. These findings will have impact on the development of flexible batteries and wearable energy storage. The Royal Society of Chemistry 2018-05-08 /pmc/articles/PMC9080329/ /pubmed/35540555 http://dx.doi.org/10.1039/c7ra13489d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Loveridge, M. J.
Malik, R.
Paul, S.
Manjunatha, K. N.
Gallanti, S.
Tan, C.
Lain, M.
Roberts, A. J.
Bhagat, R.
Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title_full Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title_fullStr Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title_full_unstemmed Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title_short Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries
title_sort binder-free sn–si heterostructure films for high capacity li-ion batteries
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080329/
https://www.ncbi.nlm.nih.gov/pubmed/35540555
http://dx.doi.org/10.1039/c7ra13489d
work_keys_str_mv AT loveridgemj binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT malikr binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT pauls binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT manjunathakn binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT gallantis binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT tanc binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT lainm binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT robertsaj binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries
AT bhagatr binderfreesnsiheterostructurefilmsforhighcapacityliionbatteries