Cargando…

Photoluminescence mechanism and applications of Zn-doped carbon dots

Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophys...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Quan, Cai, Wei, Zhang, Miaoran, Su, Rigu, Ye, Yingchun, Li, Yeqing, Zhang, Lipeng, Guo, Yongjian, Yu, Zhiqiang, Li, Siyu, Lin, Xun, Chen, Yusheng, Luo, Yan, Street, Jason, Xu, Meng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080405/
https://www.ncbi.nlm.nih.gov/pubmed/35539221
http://dx.doi.org/10.1039/c8ra02756k
Descripción
Sumario:Heteroatom-doped carbon dots (CDs) with excellent optical characteristics and negligible toxicity have emerged in many applications including bioimaging, biosensing, photocatalysis, and photothermal therapy. The metal-doping of CDs using various heteroatoms results in an enhancement of the photophysics but also imparts them with multifunctionality. However, unlike nonmetal doping, typical metal doping results in low fluorescence quantum yields (QYs), and an unclear photoluminescence mechanism. In this contribution, we detail results concerning zinc doped CDs (Zn-CDs) with QYs of up to 35%. The zinc ion charges serve as a surface passivating agent and prevent the aggregation of graphene π–π stacking, leading to an increase in the QY of the Zn-CDs. Structural and chemical investigations using spectroscopic and first principle simulations further revealed the effects of zinc doping on the CDs. The robust Zn-CDs were used for the ultra-trace detection of Hg(2+) with a detection limit of 0.1 μM, and a quench mechanism was proposed. The unique optical properties of the Zn-CDs have promise for use in applications such as in vivo sensing and future phototherapy applications.