Cargando…

First-principles study of thermoelectric properties of Mg(2)Si–Mg(2)Pb semiconductor materials

Mg(2)X(IV) (X(IV) = Si, Ge, Sn) compounds are semiconductors and their solid solutions are believed to be promising mid-temperature thermoelectric materials. By contrast, Mg(2)Pb is a metal and few studies have been conducted to investigate the thermoelectric properties of Mg(2)Si–Mg(2)Pb solid solu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Tao, Xie, Congwei, Wang, Shiyao, Oganov, Artem R., Cheng, Laifei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080444/
https://www.ncbi.nlm.nih.gov/pubmed/35539236
http://dx.doi.org/10.1039/c8ra02436g
Descripción
Sumario:Mg(2)X(IV) (X(IV) = Si, Ge, Sn) compounds are semiconductors and their solid solutions are believed to be promising mid-temperature thermoelectric materials. By contrast, Mg(2)Pb is a metal and few studies have been conducted to investigate the thermoelectric properties of Mg(2)Si–Mg(2)Pb solid solutions. Here, we present a theoretical study exploring whether Mg(2)Pb–Mg(2)Si solid solutions can be used as thermoelectric materials or not. We firstly constructed several Mg(2)Si(1−x)Pb(x) (0 ≤ x ≤ 1) structures and calculated their electronic structures. It is suggested that Mg(2)Si(1−x)Pb(x) are potential thermoelectric semiconductors in the range of 0 ≤ x ≤ 0.25. We then explicitly computed the electron relaxation time and both the electronic and lattice thermal conductivities of Mg(2)Si(1−x)Pb(x) (0 ≤ x ≤ 0.25) and studied the effect of Pb concentration on the Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit (ZT). At low Pb concentration (x = 1/16), the ZT of the Mg(2)Si(1−x)Pb(x) solid solutions (up to 0.67 at 900 K) reaches a maximum and is much higher than that of Mg(2)Si.