Cargando…

Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia

This study reports a multifunctional core/shell nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI), enhanced photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) due to its surface coating with a porous shell. Importantly, by means of introducing the surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xi, Lv, Xiaolin, Zhao, Wen, Zhou, Tiantian, Zhang, Shupeng, Shi, Zhan, Ye, Shefang, Ren, Lei, Chen, Zhiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080558/
https://www.ncbi.nlm.nih.gov/pubmed/35541095
http://dx.doi.org/10.1039/c8ra02946f
_version_ 1784702814062116864
author Zhou, Xi
Lv, Xiaolin
Zhao, Wen
Zhou, Tiantian
Zhang, Shupeng
Shi, Zhan
Ye, Shefang
Ren, Lei
Chen, Zhiwei
author_facet Zhou, Xi
Lv, Xiaolin
Zhao, Wen
Zhou, Tiantian
Zhang, Shupeng
Shi, Zhan
Ye, Shefang
Ren, Lei
Chen, Zhiwei
author_sort Zhou, Xi
collection PubMed
description This study reports a multifunctional core/shell nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI), enhanced photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) due to its surface coating with a porous shell. Importantly, by means of introducing the surface coating of a porous shell, it helps entrap large quantities of water around NPs and allow more efficient water exchange, leading to greatly improved MR contrast signals. Besides, the porous shell helps the near-infrared (NIR) absorbance of the core, and then the extremely enhanced thermal effect can be obtained under synergistic combination of PTT and MHT. By synthesizing multifunctional porous MnFe(2)O(4)/PB as an example, we found that the transversal relaxivity (r(2)) of MnFe(2)O(4) NPs might improve from 112.11 to 123.46 mM(−1) s(−1), and the specific absorption rate (SAR) of MnFe(2)O(4)/PB nanoparticles reached unprecedented levels of up to 4800 W g(−1) compared with the SAR 1182 W g(−1) of PTT under an 808 nm laser and 180 W g(−1) of MHT under an external AC magnetic field. Meanwhile, when MnFe(2)O(4) was decorated on PB nanoparticles, the magnetic properties became lower slightly, but the synergistic photothermal/magnetic hyperthermia conversion was enhanced greatly. Subsequently, in vitro T(1)–T(2) dual-modal MRI, PTT and MHT results verified that MnFe(2)O(4)/PB could serve as an excellent MRI/PTT/MHT theranostic agent. Furthermore, the MnFe(2)O(4)/PB NPs were applied as a T(1)–T(2) dual-modal MRI, PTT and MHT theranostic agent for in vivo MRI-guided photothermal and magnetic hyperthermia ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The T(1)–T(2) dual-modal MR imaging result shows a significantly contrast in the tumor site. The MPB-mediated PTT and MHT result shows high therapeutic efficiency as a result of high photothermal and magnetic hyperthermia conversion efficiency. The multifunctional NPs have a great potential application for future clinical tumorous diagnosis and treatment.
format Online
Article
Text
id pubmed-9080558
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90805582022-05-09 Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia Zhou, Xi Lv, Xiaolin Zhao, Wen Zhou, Tiantian Zhang, Shupeng Shi, Zhan Ye, Shefang Ren, Lei Chen, Zhiwei RSC Adv Chemistry This study reports a multifunctional core/shell nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI), enhanced photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) due to its surface coating with a porous shell. Importantly, by means of introducing the surface coating of a porous shell, it helps entrap large quantities of water around NPs and allow more efficient water exchange, leading to greatly improved MR contrast signals. Besides, the porous shell helps the near-infrared (NIR) absorbance of the core, and then the extremely enhanced thermal effect can be obtained under synergistic combination of PTT and MHT. By synthesizing multifunctional porous MnFe(2)O(4)/PB as an example, we found that the transversal relaxivity (r(2)) of MnFe(2)O(4) NPs might improve from 112.11 to 123.46 mM(−1) s(−1), and the specific absorption rate (SAR) of MnFe(2)O(4)/PB nanoparticles reached unprecedented levels of up to 4800 W g(−1) compared with the SAR 1182 W g(−1) of PTT under an 808 nm laser and 180 W g(−1) of MHT under an external AC magnetic field. Meanwhile, when MnFe(2)O(4) was decorated on PB nanoparticles, the magnetic properties became lower slightly, but the synergistic photothermal/magnetic hyperthermia conversion was enhanced greatly. Subsequently, in vitro T(1)–T(2) dual-modal MRI, PTT and MHT results verified that MnFe(2)O(4)/PB could serve as an excellent MRI/PTT/MHT theranostic agent. Furthermore, the MnFe(2)O(4)/PB NPs were applied as a T(1)–T(2) dual-modal MRI, PTT and MHT theranostic agent for in vivo MRI-guided photothermal and magnetic hyperthermia ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The T(1)–T(2) dual-modal MR imaging result shows a significantly contrast in the tumor site. The MPB-mediated PTT and MHT result shows high therapeutic efficiency as a result of high photothermal and magnetic hyperthermia conversion efficiency. The multifunctional NPs have a great potential application for future clinical tumorous diagnosis and treatment. The Royal Society of Chemistry 2018-05-22 /pmc/articles/PMC9080558/ /pubmed/35541095 http://dx.doi.org/10.1039/c8ra02946f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Zhou, Xi
Lv, Xiaolin
Zhao, Wen
Zhou, Tiantian
Zhang, Shupeng
Shi, Zhan
Ye, Shefang
Ren, Lei
Chen, Zhiwei
Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title_full Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title_fullStr Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title_full_unstemmed Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title_short Porous MnFe(2)O(4)-decorated PB nanocomposites: a new theranostic agent for boosted T(1)/T(2) MRI-guided synergistic photothermal/magnetic hyperthermia
title_sort porous mnfe(2)o(4)-decorated pb nanocomposites: a new theranostic agent for boosted t(1)/t(2) mri-guided synergistic photothermal/magnetic hyperthermia
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080558/
https://www.ncbi.nlm.nih.gov/pubmed/35541095
http://dx.doi.org/10.1039/c8ra02946f
work_keys_str_mv AT zhouxi porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT lvxiaolin porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT zhaowen porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT zhoutiantian porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT zhangshupeng porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT shizhan porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT yeshefang porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT renlei porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia
AT chenzhiwei porousmnfe2o4decoratedpbnanocompositesanewtheranosticagentforboostedt1t2mriguidedsynergisticphotothermalmagnetichyperthermia