Cargando…
A new red fluorophore with aggregation enhanced emission by an unexpected “One-step” protocol
In this work, a triphenylamine-benzothiadiazole-based new fluorophore is obtained from a facile “one-step” protocol. A possible reduction mechanism is proposed, and an amine containing α-H plays a key role in the reduction reaction. The resultant product A1H2 exhibits bright red emission in solid st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080569/ https://www.ncbi.nlm.nih.gov/pubmed/35541101 http://dx.doi.org/10.1039/c8ra00955d |
Sumario: | In this work, a triphenylamine-benzothiadiazole-based new fluorophore is obtained from a facile “one-step” protocol. A possible reduction mechanism is proposed, and an amine containing α-H plays a key role in the reduction reaction. The resultant product A1H2 exhibits bright red emission in solid state, with an absolute quantum yield of 44.5%. Aggregation induced emission enhancement of A1H2 is also observed with the increased water fraction in THF-H(2)O mixture. The nanoparticles of A1H2 reveal good stability and biocompatibility, which are successfully applied in cellular cytoplasm imaging. |
---|