Cargando…
Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD)
Oxidative chemical vapor deposition (oCVD) is a versatile technique that can simultaneously tailor properties (e.g., electrical, thermal conductivity) and morphology of polymer films at the nanoscale. In this work, we report the thermal conductivity of nanoscale oCVD grown poly(3,4-ethylenedioxythio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080664/ https://www.ncbi.nlm.nih.gov/pubmed/35541006 http://dx.doi.org/10.1039/c8ra03302a |
_version_ | 1784702839069605888 |
---|---|
author | Smith, Phil M. Su, Laisuo Gong, Wei Nakamura, Nathan Reeja-Jayan, B. Shen, Sheng |
author_facet | Smith, Phil M. Su, Laisuo Gong, Wei Nakamura, Nathan Reeja-Jayan, B. Shen, Sheng |
author_sort | Smith, Phil M. |
collection | PubMed |
description | Oxidative chemical vapor deposition (oCVD) is a versatile technique that can simultaneously tailor properties (e.g., electrical, thermal conductivity) and morphology of polymer films at the nanoscale. In this work, we report the thermal conductivity of nanoscale oCVD grown poly(3,4-ethylenedioxythiophene) (PEDOT) films for the first time. Measurements as low as 0.16 W m(−1) K(−1) are obtained at room temperature for PEDOT films with thicknesses ranging from 50–100 nm. These values are lower than those for solution processed PEDOT films doped with the solubilizing agent PSS (polystyrene sulfonate). The thermal conductivity of oCVD grown PEDOT films show no clear dependence on electrical conductivity, which ranges from 1 S cm(−1) to 30 S cm(−1). It is suspected that at these electrical conductivities, the electronic contribution to the thermal conductivity is extremely small and that phonon transport is dominant. Our findings suggest that CVD polymerization is a promising route towards engineering polymer films that combine low thermal conductivity with relatively high electrical conductivity values. |
format | Online Article Text |
id | pubmed-9080664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90806642022-05-09 Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) Smith, Phil M. Su, Laisuo Gong, Wei Nakamura, Nathan Reeja-Jayan, B. Shen, Sheng RSC Adv Chemistry Oxidative chemical vapor deposition (oCVD) is a versatile technique that can simultaneously tailor properties (e.g., electrical, thermal conductivity) and morphology of polymer films at the nanoscale. In this work, we report the thermal conductivity of nanoscale oCVD grown poly(3,4-ethylenedioxythiophene) (PEDOT) films for the first time. Measurements as low as 0.16 W m(−1) K(−1) are obtained at room temperature for PEDOT films with thicknesses ranging from 50–100 nm. These values are lower than those for solution processed PEDOT films doped with the solubilizing agent PSS (polystyrene sulfonate). The thermal conductivity of oCVD grown PEDOT films show no clear dependence on electrical conductivity, which ranges from 1 S cm(−1) to 30 S cm(−1). It is suspected that at these electrical conductivities, the electronic contribution to the thermal conductivity is extremely small and that phonon transport is dominant. Our findings suggest that CVD polymerization is a promising route towards engineering polymer films that combine low thermal conductivity with relatively high electrical conductivity values. The Royal Society of Chemistry 2018-05-25 /pmc/articles/PMC9080664/ /pubmed/35541006 http://dx.doi.org/10.1039/c8ra03302a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Smith, Phil M. Su, Laisuo Gong, Wei Nakamura, Nathan Reeja-Jayan, B. Shen, Sheng Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title | Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title_full | Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title_fullStr | Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title_full_unstemmed | Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title_short | Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD) |
title_sort | thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (ocvd) |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080664/ https://www.ncbi.nlm.nih.gov/pubmed/35541006 http://dx.doi.org/10.1039/c8ra03302a |
work_keys_str_mv | AT smithphilm thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd AT sulaisuo thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd AT gongwei thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd AT nakamuranathan thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd AT reejajayanb thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd AT shensheng thermalconductivityofpoly34ethylenedioxythiophenefilmsengineeredbyoxidativechemicalvapordepositionocvd |