Cargando…

Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations

We study the influence of inkjet printing scheme and sintering parameter on the electrical resistivity of multi-layer silver nanoparticle films. A central composite Design Of Experiments (DOE) is employed to maximize experimental efficiency and improve the statistical significance of parameter estim...

Descripción completa

Detalles Bibliográficos
Autores principales: Mypati, Sreemannarayana, Dhanushkodi, Shankar R., McLaren, Michael, Docoslis, Aristides, Peppley, Brant A., Barz, Dominik P. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080686/
https://www.ncbi.nlm.nih.gov/pubmed/35540963
http://dx.doi.org/10.1039/c8ra03627f
_version_ 1784702844351283200
author Mypati, Sreemannarayana
Dhanushkodi, Shankar R.
McLaren, Michael
Docoslis, Aristides
Peppley, Brant A.
Barz, Dominik P. J.
author_facet Mypati, Sreemannarayana
Dhanushkodi, Shankar R.
McLaren, Michael
Docoslis, Aristides
Peppley, Brant A.
Barz, Dominik P. J.
author_sort Mypati, Sreemannarayana
collection PubMed
description We study the influence of inkjet printing scheme and sintering parameter on the electrical resistivity of multi-layer silver nanoparticle films. A central composite Design Of Experiments (DOE) is employed to maximize experimental efficiency and improve the statistical significance of parameter estimates. The resulting mathematical correlations allow to interpret the influence of the print and sintering parameters. Detailed inspection of the correlations reveals the existence of local extrema and indicates that a structured approach such as the DOE would be significantly more effective for fabricating films with a minimum of resistivity. Furthermore, we modify the well-known Fuchs–Sondheimer Mayadas–Shatzkes model to correlate the resistivity of a multi-layer nanoparticle film with the sintering temperature and time. The modified model uses literature data but one constant inferred from two experiments. After model adjustment, the resistivities of films fabricated with different parameters can be predicted with good accuracy. This validation tremendously increases applicability and relevance of the model.
format Online
Article
Text
id pubmed-9080686
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90806862022-05-09 Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations Mypati, Sreemannarayana Dhanushkodi, Shankar R. McLaren, Michael Docoslis, Aristides Peppley, Brant A. Barz, Dominik P. J. RSC Adv Chemistry We study the influence of inkjet printing scheme and sintering parameter on the electrical resistivity of multi-layer silver nanoparticle films. A central composite Design Of Experiments (DOE) is employed to maximize experimental efficiency and improve the statistical significance of parameter estimates. The resulting mathematical correlations allow to interpret the influence of the print and sintering parameters. Detailed inspection of the correlations reveals the existence of local extrema and indicates that a structured approach such as the DOE would be significantly more effective for fabricating films with a minimum of resistivity. Furthermore, we modify the well-known Fuchs–Sondheimer Mayadas–Shatzkes model to correlate the resistivity of a multi-layer nanoparticle film with the sintering temperature and time. The modified model uses literature data but one constant inferred from two experiments. After model adjustment, the resistivities of films fabricated with different parameters can be predicted with good accuracy. This validation tremendously increases applicability and relevance of the model. The Royal Society of Chemistry 2018-05-29 /pmc/articles/PMC9080686/ /pubmed/35540963 http://dx.doi.org/10.1039/c8ra03627f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Mypati, Sreemannarayana
Dhanushkodi, Shankar R.
McLaren, Michael
Docoslis, Aristides
Peppley, Brant A.
Barz, Dominik P. J.
Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title_full Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title_fullStr Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title_full_unstemmed Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title_short Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
title_sort optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080686/
https://www.ncbi.nlm.nih.gov/pubmed/35540963
http://dx.doi.org/10.1039/c8ra03627f
work_keys_str_mv AT mypatisreemannarayana optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations
AT dhanushkodishankarr optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations
AT mclarenmichael optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations
AT docoslisaristides optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations
AT peppleybranta optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations
AT barzdominikpj optimizedinkjetprintedsilvernanoparticlefilmstheoreticalandexperimentalinvestigations