Cargando…
Stability and local magnetic moment of bilayer graphene by intercalation: first principles study
The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study. Firstly, we find that BGICs with transition metals (Sc–Zn) generate distinct magnetic properties. The intercalatio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080694/ https://www.ncbi.nlm.nih.gov/pubmed/35540980 http://dx.doi.org/10.1039/c8ra03343a |
_version_ | 1784702846280663040 |
---|---|
author | Han, Jinsen Kang, Dongdong Dai, Jiayu |
author_facet | Han, Jinsen Kang, Dongdong Dai, Jiayu |
author_sort | Han, Jinsen |
collection | PubMed |
description | The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study. Firstly, we find that BGICs with transition metals (Sc–Zn) generate distinct magnetic properties. The intercalation with most of the transition metal atoms (TMAs) gives rise to large magnetic moments from 1.0 to 4.0 μ(B), which is valuable for the spintronics. Moreover, graphene can protect the intrinsic properties of the intercalated TMAs, which can be important for applications in catalysis. These phenomena can be explained by theory of spd hybridization definitely. Secondly, weak coupling between TMAs and the surroundings indicates the possibility of implementing quantum information processing and generating controlled entanglements. For the possibility of using these materials in ultrafast electronic transistors, spintronics, catalysis, spin qubit and important applications for the extensions of graphene, we believe that BGICs can provide a significant path to synthesize novel materials. |
format | Online Article Text |
id | pubmed-9080694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90806942022-05-09 Stability and local magnetic moment of bilayer graphene by intercalation: first principles study Han, Jinsen Kang, Dongdong Dai, Jiayu RSC Adv Chemistry The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study. Firstly, we find that BGICs with transition metals (Sc–Zn) generate distinct magnetic properties. The intercalation with most of the transition metal atoms (TMAs) gives rise to large magnetic moments from 1.0 to 4.0 μ(B), which is valuable for the spintronics. Moreover, graphene can protect the intrinsic properties of the intercalated TMAs, which can be important for applications in catalysis. These phenomena can be explained by theory of spd hybridization definitely. Secondly, weak coupling between TMAs and the surroundings indicates the possibility of implementing quantum information processing and generating controlled entanglements. For the possibility of using these materials in ultrafast electronic transistors, spintronics, catalysis, spin qubit and important applications for the extensions of graphene, we believe that BGICs can provide a significant path to synthesize novel materials. The Royal Society of Chemistry 2018-05-29 /pmc/articles/PMC9080694/ /pubmed/35540980 http://dx.doi.org/10.1039/c8ra03343a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Han, Jinsen Kang, Dongdong Dai, Jiayu Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title | Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title_full | Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title_fullStr | Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title_full_unstemmed | Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title_short | Stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
title_sort | stability and local magnetic moment of bilayer graphene by intercalation: first principles study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080694/ https://www.ncbi.nlm.nih.gov/pubmed/35540980 http://dx.doi.org/10.1039/c8ra03343a |
work_keys_str_mv | AT hanjinsen stabilityandlocalmagneticmomentofbilayergraphenebyintercalationfirstprinciplesstudy AT kangdongdong stabilityandlocalmagneticmomentofbilayergraphenebyintercalationfirstprinciplesstudy AT daijiayu stabilityandlocalmagneticmomentofbilayergraphenebyintercalationfirstprinciplesstudy |