Cargando…
Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure
In order to obtain polymer microspheres for profile control and water shutoff with high temperature resistance and good swelling properties, micrometer microspheres with a double crosslinked structure were synthesized using the monomers acrylamide (AM), N-vinylpyrrolidone (NVP) and 2-acrylamide-2-me...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080755/ https://www.ncbi.nlm.nih.gov/pubmed/35540969 http://dx.doi.org/10.1039/c8ra02747a |
_version_ | 1784702860919832576 |
---|---|
author | Wang, Zhiyong Lin, Meiqin Gu, Meng Dong, Zhaoxia Zhang, Juan Yang, Zihao |
author_facet | Wang, Zhiyong Lin, Meiqin Gu, Meng Dong, Zhaoxia Zhang, Juan Yang, Zihao |
author_sort | Wang, Zhiyong |
collection | PubMed |
description | In order to obtain polymer microspheres for profile control and water shutoff with high temperature resistance and good swelling properties, micrometer microspheres with a double crosslinked structure were synthesized using the monomers acrylamide (AM), N-vinylpyrrolidone (NVP) and 2-acrylamide-2-methylpropanesulfonic acid (AMPS), an initiator of potassium persulfate, a crosslinking agent of N,N-methylene bis acrylamide and zirconium acetate. The crosslinked Zr–AM/NVP/AMPS microspheres were fully characterized with several means including FT-IR, (13)C NMR, TG-DSC and SEM. Metal crosslinking was introduced into the polymer microspheres to improve the temperature resistance by crosslinking the hydrolyzed polymer molecular chains. The results of optical microscopy and scanning electron microscopy demonstrated that a double crosslinked structure (DCS) was formed inside the Zr–AM/NVP/AMPS microspheres. It is regrettable that there is no three-dimensional network structure in the microspheres with single organic crosslinked structure (SCS). In aqueous solution, the DCS polymer microspheres were able to maintain long-term thermal stability for 150 days even at a high temperature of 140 °C. The microspheres with SCS can only be preserved for 5 days in high temperature aqueous solution at 140 °C. The TGA-DSC results indicated that the aerobic temperature capability of the DCS microspheres has been greatly improved compared with HPAM and SCS microspheres. The DCS microspheres with ultra-high temperature resistance will have broad application prospects in high temperature reservoirs. |
format | Online Article Text |
id | pubmed-9080755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90807552022-05-09 Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure Wang, Zhiyong Lin, Meiqin Gu, Meng Dong, Zhaoxia Zhang, Juan Yang, Zihao RSC Adv Chemistry In order to obtain polymer microspheres for profile control and water shutoff with high temperature resistance and good swelling properties, micrometer microspheres with a double crosslinked structure were synthesized using the monomers acrylamide (AM), N-vinylpyrrolidone (NVP) and 2-acrylamide-2-methylpropanesulfonic acid (AMPS), an initiator of potassium persulfate, a crosslinking agent of N,N-methylene bis acrylamide and zirconium acetate. The crosslinked Zr–AM/NVP/AMPS microspheres were fully characterized with several means including FT-IR, (13)C NMR, TG-DSC and SEM. Metal crosslinking was introduced into the polymer microspheres to improve the temperature resistance by crosslinking the hydrolyzed polymer molecular chains. The results of optical microscopy and scanning electron microscopy demonstrated that a double crosslinked structure (DCS) was formed inside the Zr–AM/NVP/AMPS microspheres. It is regrettable that there is no three-dimensional network structure in the microspheres with single organic crosslinked structure (SCS). In aqueous solution, the DCS polymer microspheres were able to maintain long-term thermal stability for 150 days even at a high temperature of 140 °C. The microspheres with SCS can only be preserved for 5 days in high temperature aqueous solution at 140 °C. The TGA-DSC results indicated that the aerobic temperature capability of the DCS microspheres has been greatly improved compared with HPAM and SCS microspheres. The DCS microspheres with ultra-high temperature resistance will have broad application prospects in high temperature reservoirs. The Royal Society of Chemistry 2018-05-30 /pmc/articles/PMC9080755/ /pubmed/35540969 http://dx.doi.org/10.1039/c8ra02747a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Wang, Zhiyong Lin, Meiqin Gu, Meng Dong, Zhaoxia Zhang, Juan Yang, Zihao Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title | Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title_full | Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title_fullStr | Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title_full_unstemmed | Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title_short | Zr-Induced high temperature resistance of polymer microsphere based on double crosslinked structure |
title_sort | zr-induced high temperature resistance of polymer microsphere based on double crosslinked structure |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080755/ https://www.ncbi.nlm.nih.gov/pubmed/35540969 http://dx.doi.org/10.1039/c8ra02747a |
work_keys_str_mv | AT wangzhiyong zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure AT linmeiqin zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure AT gumeng zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure AT dongzhaoxia zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure AT zhangjuan zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure AT yangzihao zrinducedhightemperatureresistanceofpolymermicrospherebasedondoublecrosslinkedstructure |