Cargando…

Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics

Closed-cell foams are widely applied as insulation and essential for the thermal management of protective garments for extreme environments. In this work, we develop and demonstrate a strategy for drastically reducing the thermal conductivity of a flexible, closed-cell polychloroprene foam to 0.031...

Descripción completa

Detalles Bibliográficos
Autores principales: Moran, Jeffrey L., Cottrill, Anton L., Benck, Jesse D., Liu, Pingwei, Yuan, Zhe, Strano, Michael S., Buongiorno, Jacopo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080917/
https://www.ncbi.nlm.nih.gov/pubmed/35539944
http://dx.doi.org/10.1039/c8ra04037k
_version_ 1784702900162789376
author Moran, Jeffrey L.
Cottrill, Anton L.
Benck, Jesse D.
Liu, Pingwei
Yuan, Zhe
Strano, Michael S.
Buongiorno, Jacopo
author_facet Moran, Jeffrey L.
Cottrill, Anton L.
Benck, Jesse D.
Liu, Pingwei
Yuan, Zhe
Strano, Michael S.
Buongiorno, Jacopo
author_sort Moran, Jeffrey L.
collection PubMed
description Closed-cell foams are widely applied as insulation and essential for the thermal management of protective garments for extreme environments. In this work, we develop and demonstrate a strategy for drastically reducing the thermal conductivity of a flexible, closed-cell polychloroprene foam to 0.031 ± 0.002 W m(−1) K(−1), approaching values of an air gap (0.027 W m(−1) K(−1)) for an extended period of time (>10 hours), within a material capable of textile processing. Ultra-insulating neoprene materials are synthesized using high-pressure processing at 243 kPa in a high-molecular-weight gas environment, such as Ar, Kr, or Xe. A Fickian diffusion model describes both the mass infusion and thermal conductivity reduction of the foam as a function of processing time, predicting a 24–72 hour required exposure time for full charging of a 6 mm thick 5 cm diameter neoprene sample. These results enable waterproof textile insulation that approximates a wearable air gap. We demonstrate a wetsuit made of ultra-low thermally conductive neoprene capable of potentially extending dive times to 2–3 hours in water below 10 °C, compared with <1 hour for the state-of-the-art. This work introduces the prospect of effectively wearing a flexible air gap for thermal protection in harsh environments.
format Online
Article
Text
id pubmed-9080917
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90809172022-05-09 Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics Moran, Jeffrey L. Cottrill, Anton L. Benck, Jesse D. Liu, Pingwei Yuan, Zhe Strano, Michael S. Buongiorno, Jacopo RSC Adv Chemistry Closed-cell foams are widely applied as insulation and essential for the thermal management of protective garments for extreme environments. In this work, we develop and demonstrate a strategy for drastically reducing the thermal conductivity of a flexible, closed-cell polychloroprene foam to 0.031 ± 0.002 W m(−1) K(−1), approaching values of an air gap (0.027 W m(−1) K(−1)) for an extended period of time (>10 hours), within a material capable of textile processing. Ultra-insulating neoprene materials are synthesized using high-pressure processing at 243 kPa in a high-molecular-weight gas environment, such as Ar, Kr, or Xe. A Fickian diffusion model describes both the mass infusion and thermal conductivity reduction of the foam as a function of processing time, predicting a 24–72 hour required exposure time for full charging of a 6 mm thick 5 cm diameter neoprene sample. These results enable waterproof textile insulation that approximates a wearable air gap. We demonstrate a wetsuit made of ultra-low thermally conductive neoprene capable of potentially extending dive times to 2–3 hours in water below 10 °C, compared with <1 hour for the state-of-the-art. This work introduces the prospect of effectively wearing a flexible air gap for thermal protection in harsh environments. The Royal Society of Chemistry 2018-06-18 /pmc/articles/PMC9080917/ /pubmed/35539944 http://dx.doi.org/10.1039/c8ra04037k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Moran, Jeffrey L.
Cottrill, Anton L.
Benck, Jesse D.
Liu, Pingwei
Yuan, Zhe
Strano, Michael S.
Buongiorno, Jacopo
Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title_full Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title_fullStr Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title_full_unstemmed Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title_short Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
title_sort noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9080917/
https://www.ncbi.nlm.nih.gov/pubmed/35539944
http://dx.doi.org/10.1039/c8ra04037k
work_keys_str_mv AT moranjeffreyl noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT cottrillantonl noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT benckjessed noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT liupingwei noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT yuanzhe noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT stranomichaels noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics
AT buongiornojacopo noblegasinfusedneopreneclosedcellfoamsachievingultralowthermalconductivityfabrics