Cargando…
Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring
BACKGROUND: Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Endocrine Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081305/ https://www.ncbi.nlm.nih.gov/pubmed/35390249 http://dx.doi.org/10.3803/EnM.2021.1343 |
_version_ | 1784702955276992512 |
---|---|
author | Jin, Ting Wang, Ranran Peng, Shiqiao Liu, Xin Zhang, Hanyi He, Xue Teng, Weiping Teng, Xiaochun |
author_facet | Jin, Ting Wang, Ranran Peng, Shiqiao Liu, Xin Zhang, Hanyi He, Xue Teng, Weiping Teng, Xiaochun |
author_sort | Jin, Ting |
collection | PubMed |
description | BACKGROUND: Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether developmental hypothyroidism impaired the morphological development of the entorhinal-dentate gyrus pathway. METHODS: We examined the structure and function of the entorhinal-dentate gyrus pathway in response to developmental hypothyroidism induced using 2-mercapto-1-methylimidazole. RESULTS: 1,1´-Dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine perchlorate tract tracing indicated that entorhinal axons showed delayed growth in reaching the outer molecular layer of the dentate gyrus at postnatal days 2 and 4 in hypothyroid conditions. The proportion of fibers in the outer molecular layer was significantly smaller in the hypothyroid group than in the euthyroid group at postnatal day 4. At postnatal day 10, the pathway showed a layer-specific distribution in the outer molecular layer, similar to the euthyroid group. However, the projected area of entorhinal axons was smaller in the hypothyroid group than in the euthyroid group. An electrophysiological examination showed that hypothyroidism impaired the long-term potentiation of the perforant and the cornu ammonis 3–cornu ammonis 1 pathways. Many repulsive axon guidance molecules were involved in the formation of the entorhinaldentate gyrus pathway. The hypothyroid group had higher levels of erythropoietin-producing hepatocyte ligand A3 and semaphorin 3A than the euthyroid group. CONCLUSION: We demonstrated that developmental hypothyroidism might influence the development of the entorhinal-dentate gyrus pathway, contributing to impaired long-term potentiation. These findings improve our understanding of neural mechanisms for memory function. |
format | Online Article Text |
id | pubmed-9081305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Korean Endocrine Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-90813052022-05-16 Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring Jin, Ting Wang, Ranran Peng, Shiqiao Liu, Xin Zhang, Hanyi He, Xue Teng, Weiping Teng, Xiaochun Endocrinol Metab (Seoul) Original Article BACKGROUND: Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether developmental hypothyroidism impaired the morphological development of the entorhinal-dentate gyrus pathway. METHODS: We examined the structure and function of the entorhinal-dentate gyrus pathway in response to developmental hypothyroidism induced using 2-mercapto-1-methylimidazole. RESULTS: 1,1´-Dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine perchlorate tract tracing indicated that entorhinal axons showed delayed growth in reaching the outer molecular layer of the dentate gyrus at postnatal days 2 and 4 in hypothyroid conditions. The proportion of fibers in the outer molecular layer was significantly smaller in the hypothyroid group than in the euthyroid group at postnatal day 4. At postnatal day 10, the pathway showed a layer-specific distribution in the outer molecular layer, similar to the euthyroid group. However, the projected area of entorhinal axons was smaller in the hypothyroid group than in the euthyroid group. An electrophysiological examination showed that hypothyroidism impaired the long-term potentiation of the perforant and the cornu ammonis 3–cornu ammonis 1 pathways. Many repulsive axon guidance molecules were involved in the formation of the entorhinaldentate gyrus pathway. The hypothyroid group had higher levels of erythropoietin-producing hepatocyte ligand A3 and semaphorin 3A than the euthyroid group. CONCLUSION: We demonstrated that developmental hypothyroidism might influence the development of the entorhinal-dentate gyrus pathway, contributing to impaired long-term potentiation. These findings improve our understanding of neural mechanisms for memory function. Korean Endocrine Society 2022-04 2022-04-08 /pmc/articles/PMC9081305/ /pubmed/35390249 http://dx.doi.org/10.3803/EnM.2021.1343 Text en Copyright © 2022 Korean Endocrine Society https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Jin, Ting Wang, Ranran Peng, Shiqiao Liu, Xin Zhang, Hanyi He, Xue Teng, Weiping Teng, Xiaochun Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title | Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title_full | Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title_fullStr | Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title_full_unstemmed | Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title_short | Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring |
title_sort | developmental hypothyroidism influences the development of the entorhinal-dentate gyrus pathway of rat offspring |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081305/ https://www.ncbi.nlm.nih.gov/pubmed/35390249 http://dx.doi.org/10.3803/EnM.2021.1343 |
work_keys_str_mv | AT jinting developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT wangranran developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT pengshiqiao developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT liuxin developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT zhanghanyi developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT hexue developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT tengweiping developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring AT tengxiaochun developmentalhypothyroidisminfluencesthedevelopmentoftheentorhinaldentategyruspathwayofratoffspring |