Cargando…
Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium
The rise in multidrug resistant bacteria is an area of growing concern and it is essential to identify new biocidal agents. Cationic grafted compounds were investigated for their antimicrobial properties using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081575/ https://www.ncbi.nlm.nih.gov/pubmed/35540130 http://dx.doi.org/10.1039/c8ra02673d |
_version_ | 1784703015981154304 |
---|---|
author | McBrearty, Jordan Barker, David Damavandi, Mona Wilson-Nieuwenhuis, Joels Pilkington, Lisa I. Dempsey-Hibbert, Nina Slate, Anthony J. Whitehead, Kathryn A. |
author_facet | McBrearty, Jordan Barker, David Damavandi, Mona Wilson-Nieuwenhuis, Joels Pilkington, Lisa I. Dempsey-Hibbert, Nina Slate, Anthony J. Whitehead, Kathryn A. |
author_sort | McBrearty, Jordan |
collection | PubMed |
description | The rise in multidrug resistant bacteria is an area of growing concern and it is essential to identify new biocidal agents. Cationic grafted compounds were investigated for their antimicrobial properties using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Synergy testing was carried out using the compounds in the presence of ultraviolet (UV). Fractional inhibitory concentration (FIC) and fractional bactericidal concentration (FBC) tests were carried out using the cationic molecules in conjunction with metal ion solutions of gold, silver, palladium, platinum, rhodium, titanium, tin, vanadium and molybdenum. Individually, the cationic compounds containing quaternary amines, polyphenylene vinylene (PPV) with long polyacrylate grafts (PPV-g-PMETAC (HMw)), polyphenylene ethylene (PPE) with long polyacrylate grafts (PPE-g-PMETAC (HMw)), polyphenylene vinylene (PPV) with short polyacrylate grafts (PPV-g-PMETAC (LMw)) and polyphenylene ethylene (PPE) with short polyacrylate grafts (PPE-g-PMETAC (LMw)) were effective against Enterococcus faecium. The most successful compound under UV was PPV-g-PMETAC (HMw). Following the FICs, palladium and rhodium ion solutions caused a synergistic reaction with all four tested compounds. The presence of conjugated bonds in the cationic molecules increased its antimicrobial activity. These results suggest that the chemical backbone of the compounds, alongside the chain lengths and chain attachment affect the antimicrobial efficacy of a compound. These factors should be taken into consideration when formulating new biocidal combinations. |
format | Online Article Text |
id | pubmed-9081575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90815752022-05-09 Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium McBrearty, Jordan Barker, David Damavandi, Mona Wilson-Nieuwenhuis, Joels Pilkington, Lisa I. Dempsey-Hibbert, Nina Slate, Anthony J. Whitehead, Kathryn A. RSC Adv Chemistry The rise in multidrug resistant bacteria is an area of growing concern and it is essential to identify new biocidal agents. Cationic grafted compounds were investigated for their antimicrobial properties using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Synergy testing was carried out using the compounds in the presence of ultraviolet (UV). Fractional inhibitory concentration (FIC) and fractional bactericidal concentration (FBC) tests were carried out using the cationic molecules in conjunction with metal ion solutions of gold, silver, palladium, platinum, rhodium, titanium, tin, vanadium and molybdenum. Individually, the cationic compounds containing quaternary amines, polyphenylene vinylene (PPV) with long polyacrylate grafts (PPV-g-PMETAC (HMw)), polyphenylene ethylene (PPE) with long polyacrylate grafts (PPE-g-PMETAC (HMw)), polyphenylene vinylene (PPV) with short polyacrylate grafts (PPV-g-PMETAC (LMw)) and polyphenylene ethylene (PPE) with short polyacrylate grafts (PPE-g-PMETAC (LMw)) were effective against Enterococcus faecium. The most successful compound under UV was PPV-g-PMETAC (HMw). Following the FICs, palladium and rhodium ion solutions caused a synergistic reaction with all four tested compounds. The presence of conjugated bonds in the cationic molecules increased its antimicrobial activity. These results suggest that the chemical backbone of the compounds, alongside the chain lengths and chain attachment affect the antimicrobial efficacy of a compound. These factors should be taken into consideration when formulating new biocidal combinations. The Royal Society of Chemistry 2018-06-27 /pmc/articles/PMC9081575/ /pubmed/35540130 http://dx.doi.org/10.1039/c8ra02673d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry McBrearty, Jordan Barker, David Damavandi, Mona Wilson-Nieuwenhuis, Joels Pilkington, Lisa I. Dempsey-Hibbert, Nina Slate, Anthony J. Whitehead, Kathryn A. Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title | Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title_full | Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title_fullStr | Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title_full_unstemmed | Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title_short | Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium |
title_sort | antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with uv or metal ions against enterococcus faecium |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081575/ https://www.ncbi.nlm.nih.gov/pubmed/35540130 http://dx.doi.org/10.1039/c8ra02673d |
work_keys_str_mv | AT mcbreartyjordan antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT barkerdavid antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT damavandimona antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT wilsonnieuwenhuisjoels antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT pilkingtonlisai antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT dempseyhibbertnina antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT slateanthonyj antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium AT whiteheadkathryna antimicrobialsynergyofcationicgraftedpolyparaphenyleneethynyleneandpolyparaphenylenevinylenecompoundswithuvormetalionsagainstenterococcusfaecium |