Cargando…
Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20
The polymorphic quantitative analysis of explosives is very important for national defense and security inspection. However, conventional analytical methods are inaccurate and time-consuming because of the complexity of the polymorphic explosive samples. In this paper, we established a new method of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081593/ https://www.ncbi.nlm.nih.gov/pubmed/35540140 http://dx.doi.org/10.1039/c8ra02189a |
_version_ | 1784703020459622400 |
---|---|
author | He, Xuan Liu, Yu Huang, Shiliang Liu, Yi Pu, Xuemei Xu, Tao |
author_facet | He, Xuan Liu, Yu Huang, Shiliang Liu, Yi Pu, Xuemei Xu, Tao |
author_sort | He, Xuan |
collection | PubMed |
description | The polymorphic quantitative analysis of explosives is very important for national defense and security inspection. However, conventional analytical methods are inaccurate and time-consuming because of the complexity of the polymorphic explosive samples. In this paper, we established a new method of polymorphic quantitative determination in a simple, sensitive, and accurate way. High quality spectra of the four phases of the explosive CL-20 were obtained using a compact Raman spectrometer, and QM calculations were performed to confirm the tentative assignment of the most predominant Raman peaks. Principal component analysis (PCA) of the data was performed to understand the factors affecting the spectral variation across the entire Raman region of the four phases of CL-20 and to calculate the characteristic Raman shift region. In addition, different characteristic peaks were selected according to the PCA and QM calculation results, and a new method for the quantitative determination of polymorphic impurities in ε-CL-20 was also set up. The detection level for the polymorphic impurities was determined to be below 1%, and the standard deviation was less than ±0.5%. This new method is of significant importance for the quality control of synthesis and production not only in explosives, but also in pharmaceuticals, agrochemicals, and optics industries. |
format | Online Article Text |
id | pubmed-9081593 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90815932022-05-09 Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 He, Xuan Liu, Yu Huang, Shiliang Liu, Yi Pu, Xuemei Xu, Tao RSC Adv Chemistry The polymorphic quantitative analysis of explosives is very important for national defense and security inspection. However, conventional analytical methods are inaccurate and time-consuming because of the complexity of the polymorphic explosive samples. In this paper, we established a new method of polymorphic quantitative determination in a simple, sensitive, and accurate way. High quality spectra of the four phases of the explosive CL-20 were obtained using a compact Raman spectrometer, and QM calculations were performed to confirm the tentative assignment of the most predominant Raman peaks. Principal component analysis (PCA) of the data was performed to understand the factors affecting the spectral variation across the entire Raman region of the four phases of CL-20 and to calculate the characteristic Raman shift region. In addition, different characteristic peaks were selected according to the PCA and QM calculation results, and a new method for the quantitative determination of polymorphic impurities in ε-CL-20 was also set up. The detection level for the polymorphic impurities was determined to be below 1%, and the standard deviation was less than ±0.5%. This new method is of significant importance for the quality control of synthesis and production not only in explosives, but also in pharmaceuticals, agrochemicals, and optics industries. The Royal Society of Chemistry 2018-06-27 /pmc/articles/PMC9081593/ /pubmed/35540140 http://dx.doi.org/10.1039/c8ra02189a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry He, Xuan Liu, Yu Huang, Shiliang Liu, Yi Pu, Xuemei Xu, Tao Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title | Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title_full | Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title_fullStr | Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title_full_unstemmed | Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title_short | Raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 |
title_sort | raman spectroscopy coupled with principal component analysis to quantitatively analyze four crystallographic phases of explosive cl-20 |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081593/ https://www.ncbi.nlm.nih.gov/pubmed/35540140 http://dx.doi.org/10.1039/c8ra02189a |
work_keys_str_mv | AT hexuan ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 AT liuyu ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 AT huangshiliang ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 AT liuyi ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 AT puxuemei ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 AT xutao ramanspectroscopycoupledwithprincipalcomponentanalysistoquantitativelyanalyzefourcrystallographicphasesofexplosivecl20 |