Cargando…

Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application

For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic s...

Descripción completa

Detalles Bibliográficos
Autores principales: Thiyagarajan, Kalaiyarasan, Bharti, Vijay K., Tyagi, Shruti, Tyagi, Pankaj K., Ahuja, Anami, Kumar, Krishna, Raj, Tilak, Kumar, Bhuvnesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081624/
https://www.ncbi.nlm.nih.gov/pubmed/35540173
http://dx.doi.org/10.1039/c8ra03649g
_version_ 1784703028057604096
author Thiyagarajan, Kalaiyarasan
Bharti, Vijay K.
Tyagi, Shruti
Tyagi, Pankaj K.
Ahuja, Anami
Kumar, Krishna
Raj, Tilak
Kumar, Bhuvnesh
author_facet Thiyagarajan, Kalaiyarasan
Bharti, Vijay K.
Tyagi, Shruti
Tyagi, Pankaj K.
Ahuja, Anami
Kumar, Krishna
Raj, Tilak
Kumar, Bhuvnesh
author_sort Thiyagarajan, Kalaiyarasan
collection PubMed
description For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic strength, and temperature, and cytotoxicity toward mammalian cells has restricted their more extensive applications. Hence, there is urgent need to develop highly biocompatible, non-toxic, and stable silver nanoparticles for wide-ranging environments and applications. In the present study, a simple, sustainable, cost-effective and green method has been developed to prepare highly stable aqueous colloidal silver nanoparticles (AgNPs-EW) using the ovalbumin, ovotransferrin, and ovomucoid of egg-white as reducing and capping agents accomplished under the irradiation of direct sunlight. Then, we evaluated the effects of freezing–drying (lyophilization) and freeze–thaw cycles on the stability of AgNPs-EW in aqueous solution under visual inspection, transmission electron microscopy, and absorbance spectroscopy. In addition, we studied the antibacterial activity against Salmonella typhimurium and Escherichia coli, carried out biocompatibility studies on chicken blood, and tested acute, chronic toxicity in Drosophila melanogaster. The results suggest that AgNPs-EW did not aggregate upon freeze-thawing and lyophilization, thus exhibiting remarkable stability. The antibacterial activity results showed that the AgNPs-EW had the highest antibacterial activity, and the minimum inhibitory concentration (MIC) of AgNPs-EW for E. Coli and S. typhimurium were 4 and 6 μg ml(−1), respectively. The biocompatibility study revealed that the AgNPs-EW did not induce any hemolytic effect or structural damage to the cell membranes of chicken erythrocytes up to a concentration of 12 μg ml(−1). Similarly, no acute and chronic toxicity was observed on melanization, fecundity, hatchability, viability, and the duration of development in the 1(st) generation of Drosophila melanogaster at the concentration range of 10 mg L(−1) to 100 mg L(−1) of AgNPs-EW, and all the flies completed their full developmental cycle. Therefore, the present study successfully demonstrated the green and sustainable preparation of non-toxic AgNPs-EW having good biocompatibility, enhanced colloidal stability, and antibacterial activity. Hence, the synthesized AgNPs-EW could be used for the development of an antimicrobial formulation for controlling microbial infection.
format Online
Article
Text
id pubmed-9081624
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90816242022-05-09 Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application Thiyagarajan, Kalaiyarasan Bharti, Vijay K. Tyagi, Shruti Tyagi, Pankaj K. Ahuja, Anami Kumar, Krishna Raj, Tilak Kumar, Bhuvnesh RSC Adv Chemistry For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic strength, and temperature, and cytotoxicity toward mammalian cells has restricted their more extensive applications. Hence, there is urgent need to develop highly biocompatible, non-toxic, and stable silver nanoparticles for wide-ranging environments and applications. In the present study, a simple, sustainable, cost-effective and green method has been developed to prepare highly stable aqueous colloidal silver nanoparticles (AgNPs-EW) using the ovalbumin, ovotransferrin, and ovomucoid of egg-white as reducing and capping agents accomplished under the irradiation of direct sunlight. Then, we evaluated the effects of freezing–drying (lyophilization) and freeze–thaw cycles on the stability of AgNPs-EW in aqueous solution under visual inspection, transmission electron microscopy, and absorbance spectroscopy. In addition, we studied the antibacterial activity against Salmonella typhimurium and Escherichia coli, carried out biocompatibility studies on chicken blood, and tested acute, chronic toxicity in Drosophila melanogaster. The results suggest that AgNPs-EW did not aggregate upon freeze-thawing and lyophilization, thus exhibiting remarkable stability. The antibacterial activity results showed that the AgNPs-EW had the highest antibacterial activity, and the minimum inhibitory concentration (MIC) of AgNPs-EW for E. Coli and S. typhimurium were 4 and 6 μg ml(−1), respectively. The biocompatibility study revealed that the AgNPs-EW did not induce any hemolytic effect or structural damage to the cell membranes of chicken erythrocytes up to a concentration of 12 μg ml(−1). Similarly, no acute and chronic toxicity was observed on melanization, fecundity, hatchability, viability, and the duration of development in the 1(st) generation of Drosophila melanogaster at the concentration range of 10 mg L(−1) to 100 mg L(−1) of AgNPs-EW, and all the flies completed their full developmental cycle. Therefore, the present study successfully demonstrated the green and sustainable preparation of non-toxic AgNPs-EW having good biocompatibility, enhanced colloidal stability, and antibacterial activity. Hence, the synthesized AgNPs-EW could be used for the development of an antimicrobial formulation for controlling microbial infection. The Royal Society of Chemistry 2018-06-25 /pmc/articles/PMC9081624/ /pubmed/35540173 http://dx.doi.org/10.1039/c8ra03649g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Thiyagarajan, Kalaiyarasan
Bharti, Vijay K.
Tyagi, Shruti
Tyagi, Pankaj K.
Ahuja, Anami
Kumar, Krishna
Raj, Tilak
Kumar, Bhuvnesh
Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title_full Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title_fullStr Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title_full_unstemmed Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title_short Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
title_sort synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081624/
https://www.ncbi.nlm.nih.gov/pubmed/35540173
http://dx.doi.org/10.1039/c8ra03649g
work_keys_str_mv AT thiyagarajankalaiyarasan synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT bhartivijayk synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT tyagishruti synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT tyagipankajk synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT ahujaanami synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT kumarkrishna synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT rajtilak synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication
AT kumarbhuvnesh synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication