Cargando…
Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application
For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081624/ https://www.ncbi.nlm.nih.gov/pubmed/35540173 http://dx.doi.org/10.1039/c8ra03649g |
_version_ | 1784703028057604096 |
---|---|
author | Thiyagarajan, Kalaiyarasan Bharti, Vijay K. Tyagi, Shruti Tyagi, Pankaj K. Ahuja, Anami Kumar, Krishna Raj, Tilak Kumar, Bhuvnesh |
author_facet | Thiyagarajan, Kalaiyarasan Bharti, Vijay K. Tyagi, Shruti Tyagi, Pankaj K. Ahuja, Anami Kumar, Krishna Raj, Tilak Kumar, Bhuvnesh |
author_sort | Thiyagarajan, Kalaiyarasan |
collection | PubMed |
description | For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic strength, and temperature, and cytotoxicity toward mammalian cells has restricted their more extensive applications. Hence, there is urgent need to develop highly biocompatible, non-toxic, and stable silver nanoparticles for wide-ranging environments and applications. In the present study, a simple, sustainable, cost-effective and green method has been developed to prepare highly stable aqueous colloidal silver nanoparticles (AgNPs-EW) using the ovalbumin, ovotransferrin, and ovomucoid of egg-white as reducing and capping agents accomplished under the irradiation of direct sunlight. Then, we evaluated the effects of freezing–drying (lyophilization) and freeze–thaw cycles on the stability of AgNPs-EW in aqueous solution under visual inspection, transmission electron microscopy, and absorbance spectroscopy. In addition, we studied the antibacterial activity against Salmonella typhimurium and Escherichia coli, carried out biocompatibility studies on chicken blood, and tested acute, chronic toxicity in Drosophila melanogaster. The results suggest that AgNPs-EW did not aggregate upon freeze-thawing and lyophilization, thus exhibiting remarkable stability. The antibacterial activity results showed that the AgNPs-EW had the highest antibacterial activity, and the minimum inhibitory concentration (MIC) of AgNPs-EW for E. Coli and S. typhimurium were 4 and 6 μg ml(−1), respectively. The biocompatibility study revealed that the AgNPs-EW did not induce any hemolytic effect or structural damage to the cell membranes of chicken erythrocytes up to a concentration of 12 μg ml(−1). Similarly, no acute and chronic toxicity was observed on melanization, fecundity, hatchability, viability, and the duration of development in the 1(st) generation of Drosophila melanogaster at the concentration range of 10 mg L(−1) to 100 mg L(−1) of AgNPs-EW, and all the flies completed their full developmental cycle. Therefore, the present study successfully demonstrated the green and sustainable preparation of non-toxic AgNPs-EW having good biocompatibility, enhanced colloidal stability, and antibacterial activity. Hence, the synthesized AgNPs-EW could be used for the development of an antimicrobial formulation for controlling microbial infection. |
format | Online Article Text |
id | pubmed-9081624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90816242022-05-09 Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application Thiyagarajan, Kalaiyarasan Bharti, Vijay K. Tyagi, Shruti Tyagi, Pankaj K. Ahuja, Anami Kumar, Krishna Raj, Tilak Kumar, Bhuvnesh RSC Adv Chemistry For nearly a decade, silver nanoparticles (AgNPs) have been the most prevalent commercial nanomaterials products widely used in different biomedical applications due to their broad-spectrum antimicrobial activity. However, their poor long-term stability in different environments, namely, pH, ionic strength, and temperature, and cytotoxicity toward mammalian cells has restricted their more extensive applications. Hence, there is urgent need to develop highly biocompatible, non-toxic, and stable silver nanoparticles for wide-ranging environments and applications. In the present study, a simple, sustainable, cost-effective and green method has been developed to prepare highly stable aqueous colloidal silver nanoparticles (AgNPs-EW) using the ovalbumin, ovotransferrin, and ovomucoid of egg-white as reducing and capping agents accomplished under the irradiation of direct sunlight. Then, we evaluated the effects of freezing–drying (lyophilization) and freeze–thaw cycles on the stability of AgNPs-EW in aqueous solution under visual inspection, transmission electron microscopy, and absorbance spectroscopy. In addition, we studied the antibacterial activity against Salmonella typhimurium and Escherichia coli, carried out biocompatibility studies on chicken blood, and tested acute, chronic toxicity in Drosophila melanogaster. The results suggest that AgNPs-EW did not aggregate upon freeze-thawing and lyophilization, thus exhibiting remarkable stability. The antibacterial activity results showed that the AgNPs-EW had the highest antibacterial activity, and the minimum inhibitory concentration (MIC) of AgNPs-EW for E. Coli and S. typhimurium were 4 and 6 μg ml(−1), respectively. The biocompatibility study revealed that the AgNPs-EW did not induce any hemolytic effect or structural damage to the cell membranes of chicken erythrocytes up to a concentration of 12 μg ml(−1). Similarly, no acute and chronic toxicity was observed on melanization, fecundity, hatchability, viability, and the duration of development in the 1(st) generation of Drosophila melanogaster at the concentration range of 10 mg L(−1) to 100 mg L(−1) of AgNPs-EW, and all the flies completed their full developmental cycle. Therefore, the present study successfully demonstrated the green and sustainable preparation of non-toxic AgNPs-EW having good biocompatibility, enhanced colloidal stability, and antibacterial activity. Hence, the synthesized AgNPs-EW could be used for the development of an antimicrobial formulation for controlling microbial infection. The Royal Society of Chemistry 2018-06-25 /pmc/articles/PMC9081624/ /pubmed/35540173 http://dx.doi.org/10.1039/c8ra03649g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Thiyagarajan, Kalaiyarasan Bharti, Vijay K. Tyagi, Shruti Tyagi, Pankaj K. Ahuja, Anami Kumar, Krishna Raj, Tilak Kumar, Bhuvnesh Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title | Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title_full | Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title_fullStr | Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title_full_unstemmed | Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title_short | Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
title_sort | synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081624/ https://www.ncbi.nlm.nih.gov/pubmed/35540173 http://dx.doi.org/10.1039/c8ra03649g |
work_keys_str_mv | AT thiyagarajankalaiyarasan synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT bhartivijayk synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT tyagishruti synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT tyagipankajk synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT ahujaanami synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT kumarkrishna synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT rajtilak synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication AT kumarbhuvnesh synthesisofnontoxicbiocompatibleandcolloidalstablesilvernanoparticleusingeggwhiteproteinascappingandreducingagentsforsustainableantibacterialapplication |