Cargando…
Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study
OBJECTIVE: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. MATERIALS AND METHODS: A commercial deep learning-based software for mammography was validated using external dat...
Autores principales: | Lee, Jeong Hoon, Kim, Ki Hwan, Lee, Eun Hye, Ahn, Jong Seok, Ryu, Jung Kyu, Park, Young Mi, Shin, Gi Won, Kim, Young Joong, Choi, Hye Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081685/ https://www.ncbi.nlm.nih.gov/pubmed/35434976 http://dx.doi.org/10.3348/kjr.2021.0476 |
Ejemplares similares
-
The Efficacy of Mammography Boot Camp to Improve the Performance of Radiologists
por: Lee, Eun Hye, et al.
Publicado: (2014) -
Deep Learning-Based Artificial Intelligence for Mammography
por: Yoon, Jung Hyun, et al.
Publicado: (2021) -
Performance of Screening Mammography: A Report of the Alliance for Breast Cancer Screening in Korea
por: Lee, Eun Hye, et al.
Publicado: (2016) -
Analysis of Participant Factors That Affect the Diagnostic Performance of Screening Mammography: A Report of the Alliance for Breast Cancer Screening in Korea
por: Kim, Young Joong, et al.
Publicado: (2017) -
Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study
por: Kim, Yeon Soo, et al.
Publicado: (2022)