Cargando…
Tracing Evolving Networks Using Tensor Factorizations vs. ICA-Based Approaches
Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capt...
Autores principales: | Acar, Evrim, Roald, Marie, Hossain, Khondoker M., Calhoun, Vince D., Adali, Tülay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081795/ https://www.ncbi.nlm.nih.gov/pubmed/35546891 http://dx.doi.org/10.3389/fnins.2022.861402 |
Ejemplares similares
-
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
por: Du, Yuhui, et al.
Publicado: (2017) -
Unraveling Diagnostic Biomarkers of Schizophrenia Through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data
por: Acar, Evrim, et al.
Publicado: (2019) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011) -
An ICA with reference approach in identification of genetic variation and associated brain networks
por: Liu, Jingyu, et al.
Publicado: (2012) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018)