Cargando…
Three-dimensionally printed pressure sensor arrays from hysteresis-less stretchable piezoresistive composites
In this study, we formulate three-dimensionally (3D) printable composite pastes employing electrostatically assembled-hybrid carbon and a polystyrene-polyisoprene-polystyrene tri-block copolymer elastomer for the fabrication of multi-stack printed piezoresistive pressure sensor arrays. To address a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082324/ https://www.ncbi.nlm.nih.gov/pubmed/35541388 http://dx.doi.org/10.1039/c9ra08461d |
Sumario: | In this study, we formulate three-dimensionally (3D) printable composite pastes employing electrostatically assembled-hybrid carbon and a polystyrene-polyisoprene-polystyrene tri-block copolymer elastomer for the fabrication of multi-stack printed piezoresistive pressure sensor arrays. To address a critical drawback of piezoresistive composite materials, we have developed a previously unrecognized strategy of incorporating a non-ionic amphiphilic surfactant, sorbitan trioleate, into composite materials. It is revealed that the surfactant with an appropriate amphiphilic property, represented by the hydrophilic-lipophilic balance (HLB) index of 1.8, allows for a reversible piezoresistive characteristic under a wide pressure range up to 30 kPa as well as a significant reduction of elastomer viscoelastic behavior. The 3D-printed pressure sensor arrays exhibit a sensitivity of 0.31 kPa(−1) in a linear trend, and it is demonstrated successfully that the position-addressable array device is capable of spatially detecting objects up to a pressure level of 22.1 kPa. |
---|