Cargando…
Neuroevolution Guided Hybrid Spiking Neural Network Training
Neuromorphic computing algorithms based on Spiking Neural Networks (SNNs) are evolving to be a disruptive technology driving machine learning research. The overarching goal of this work is to develop a structured algorithmic framework for SNN training that optimizes unique SNN-specific properties li...
Autores principales: | Lu, Sen, Sengupta, Abhronil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082355/ https://www.ncbi.nlm.nih.gov/pubmed/35546880 http://dx.doi.org/10.3389/fnins.2022.838523 |
Ejemplares similares
-
Exploring the Connection Between Binary and Spiking Neural Networks
por: Lu, Sen, et al.
Publicado: (2020) -
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
por: Sengupta, Abhronil, et al.
Publicado: (2019) -
Personalized Hybrid Education Framework Based on Neuroevolution Methodologies
por: Yin, Wenjing
Publicado: (2022) -
Hands-On Neuroevolution with Python
por: Omelianenko, Iaroslav
Publicado: (2019) -
Agile Artificial Intelligence in Pharo: Implementing Neural Networks, Genetic Algorithms, and Neuroevolution
por: Bergel, Alexandre
Publicado: (2020)