Cargando…
Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation
Calcium phosphate (CaP) has similar chemical properties to those of the inorganic component of human bone tissue, for potential application in drug delivery for the chemotherapy of osteosarcoma. In this work, CaP with a porous microsphere structure has been synthesized using fructose-1,6-bisphosphat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082617/ https://www.ncbi.nlm.nih.gov/pubmed/35539788 http://dx.doi.org/10.1039/c8ra03943g |
_version_ | 1784703241675603968 |
---|---|
author | Liu, Jun-Feng Wei, Lu Duolikun, Dilixiati Hou, Xiao-Dong Chen, Feng Liu, Jun-Jian Zheng, Long-Po |
author_facet | Liu, Jun-Feng Wei, Lu Duolikun, Dilixiati Hou, Xiao-Dong Chen, Feng Liu, Jun-Jian Zheng, Long-Po |
author_sort | Liu, Jun-Feng |
collection | PubMed |
description | Calcium phosphate (CaP) has similar chemical properties to those of the inorganic component of human bone tissue, for potential application in drug delivery for the chemotherapy of osteosarcoma. In this work, CaP with a porous microsphere structure has been synthesized using fructose-1,6-bisphosphate (FBP) as the phosphorus source by a simple wet-chemical strategy at room temperature. The CaP porous microspheres, as an organic–inorganic hybrid nano-platform, exhibit good doxorubicin (Dox) loading capacity, and Dox-loading CaP, enhancing the in vitro chemotherapy of osteosarcoma cells. The CaP porous microspheres show high biocompatibility, and induce the osteogenic differentiation of MC3T3-E1. These results indicate that the CaP porous microspheres reported in this study are promising for application as an anti-osteosarcoma drug carrier and osteoinductive material for bone regeneration in the treatment of osteosarcoma. |
format | Online Article Text |
id | pubmed-9082617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90826172022-05-09 Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation Liu, Jun-Feng Wei, Lu Duolikun, Dilixiati Hou, Xiao-Dong Chen, Feng Liu, Jun-Jian Zheng, Long-Po RSC Adv Chemistry Calcium phosphate (CaP) has similar chemical properties to those of the inorganic component of human bone tissue, for potential application in drug delivery for the chemotherapy of osteosarcoma. In this work, CaP with a porous microsphere structure has been synthesized using fructose-1,6-bisphosphate (FBP) as the phosphorus source by a simple wet-chemical strategy at room temperature. The CaP porous microspheres, as an organic–inorganic hybrid nano-platform, exhibit good doxorubicin (Dox) loading capacity, and Dox-loading CaP, enhancing the in vitro chemotherapy of osteosarcoma cells. The CaP porous microspheres show high biocompatibility, and induce the osteogenic differentiation of MC3T3-E1. These results indicate that the CaP porous microspheres reported in this study are promising for application as an anti-osteosarcoma drug carrier and osteoinductive material for bone regeneration in the treatment of osteosarcoma. The Royal Society of Chemistry 2018-07-16 /pmc/articles/PMC9082617/ /pubmed/35539788 http://dx.doi.org/10.1039/c8ra03943g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Liu, Jun-Feng Wei, Lu Duolikun, Dilixiati Hou, Xiao-Dong Chen, Feng Liu, Jun-Jian Zheng, Long-Po Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title | Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title_full | Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title_fullStr | Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title_full_unstemmed | Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title_short | Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
title_sort | preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082617/ https://www.ncbi.nlm.nih.gov/pubmed/35539788 http://dx.doi.org/10.1039/c8ra03943g |
work_keys_str_mv | AT liujunfeng preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT weilu preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT duolikundilixiati preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT houxiaodong preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT chenfeng preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT liujunjian preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation AT zhenglongpo preparationofporouscalciumphosphatemicrosphereswithphosphatecontainingmoleculesatroomtemperaturefordrugdeliveryandosteogenicdifferentiation |