Cargando…
Multi-Hierarchical Fusion to Capture the Latent Invariance for Calibration-Free Brain-Computer Interfaces
Brain-computer interfaces (BCI) based motor imagery (MI) has become a research hotspot for establishing a flexible communication channel for patients with apoplexy or degenerative pathologies. Accurate decoding of motor imagery electroencephalography (MI-EEG) signals, while essential for effective B...
Autores principales: | Yang, Jun, Liu, Lintao, Yu, Huijuan, Ma, Zhengmin, Shen, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082749/ https://www.ncbi.nlm.nih.gov/pubmed/35546894 http://dx.doi.org/10.3389/fnins.2022.824471 |
Ejemplares similares
-
Calibration-Free Gaze Interfaces Based on Linear Smooth Pursuit
por: Zhe, Zeng, et al.
Publicado: (2020) -
Towards calibration-invariant spectroscopy using deep learning
por: Chatzidakis, M., et al.
Publicado: (2019) -
Design of multi-target activity landscapes that capture hierarchical activity cliff distributions
por: Dimova, Dilyana, et al.
Publicado: (2012) -
An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface
por: Ma, Teng, et al.
Publicado: (2018) -
Multi-channel feature fusion attention Dehazing network
por: Zou, Changjun, et al.
Publicado: (2023)