Cargando…
Multimodal Human-Exoskeleton Interface for Lower Limb Movement Prediction Through a Dense Co-Attention Symmetric Mechanism
A challenging task for the biological neural signal-based human-exoskeleton interface is to achieve accurate lower limb movement prediction of patients with hemiplegia in rehabilitation training scenarios. The human-exoskeleton interface based on single-modal biological signals such as electroenceph...
Autores principales: | Shi, Kecheng, Mu, Fengjun, Huang, Rui, Huang, Ke, Peng, Zhinan, Zou, Chaobin, Yang, Xiao, Cheng, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082753/ https://www.ncbi.nlm.nih.gov/pubmed/35546887 http://dx.doi.org/10.3389/fnins.2022.796290 |
Ejemplares similares
-
MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram
por: Shi, Kecheng, et al.
Publicado: (2021) -
Trajectory Modulation for Impact Reducing of Lower-Limb Exoskeletons
por: Zhang, Long, et al.
Publicado: (2022) -
Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients
por: Peng, Zhinan, et al.
Publicado: (2020) -
Interaction learning control with movement primitives for lower limb exoskeleton
por: Wang, Jiaqi, et al.
Publicado: (2022) -
Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton
por: Ortiz, Mario, et al.
Publicado: (2020)