Cargando…
Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia
BACKGROUND: As the prevalences of neglected tropical diseases reduce to low levels in some countries, policymakers require precise disease estimates to decide whether the set public health targets have been met. At low prevalence levels, traditional statistical methods produce imprecise estimates. M...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082807/ https://www.ncbi.nlm.nih.gov/pubmed/34791259 http://dx.doi.org/10.1093/ije/dyab227 |
_version_ | 1784703284688191488 |
---|---|
author | Amoah, Benjamin Fronterre, Claudio Johnson, Olatunji Dejene, Michael Seife, Fikre Negussu, Nebiyu Bakhtiari, Ana Harding-Esch, Emma M Giorgi, Emanuele Solomon, Anthony W Diggle, Peter J |
author_facet | Amoah, Benjamin Fronterre, Claudio Johnson, Olatunji Dejene, Michael Seife, Fikre Negussu, Nebiyu Bakhtiari, Ana Harding-Esch, Emma M Giorgi, Emanuele Solomon, Anthony W Diggle, Peter J |
author_sort | Amoah, Benjamin |
collection | PubMed |
description | BACKGROUND: As the prevalences of neglected tropical diseases reduce to low levels in some countries, policymakers require precise disease estimates to decide whether the set public health targets have been met. At low prevalence levels, traditional statistical methods produce imprecise estimates. More modern geospatial statistical methods can deliver the required level of precision for accurate decision-making. METHODS: Using spatially referenced data from 3567 cluster locations in Ethiopia in the years 2017, 2018 and 2019, we developed a geostatistical model to estimate the prevalence of trachomatous trichiasis and to calculate the probability that the trachomatous trichiasis component of the elimination of trachoma as a public health problem has already been achieved for each of 482 evaluation units. We also compared the precision of traditional and geostatistical approaches by the ratios of the lengths of their 95% predictive intervals. RESULTS: The elimination threshold of trachomatous trichiasis (prevalence ≤ 0.2% in individuals aged ≥15 years) is met with a probability of 0.9 or more in 8 out of the 482 evaluation units assessed, and with a probability of ≤0.1 in 469 evaluation units. For the remaining five evaluation units, the probability of elimination is between 0.45 and 0.65. Prevalence estimates were, on average, 10 times more precise than estimates obtained using the traditional approach. CONCLUSIONS: By accounting for and exploiting spatial correlation in the prevalence data, we achieved remarkably improved precision of prevalence estimates compared with the traditional approach. The geostatistical approach also delivers predictions for unsampled evaluation units that are geographically close to sampled evaluation units. |
format | Online Article Text |
id | pubmed-9082807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-90828072022-05-09 Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia Amoah, Benjamin Fronterre, Claudio Johnson, Olatunji Dejene, Michael Seife, Fikre Negussu, Nebiyu Bakhtiari, Ana Harding-Esch, Emma M Giorgi, Emanuele Solomon, Anthony W Diggle, Peter J Int J Epidemiol Infectious Disease BACKGROUND: As the prevalences of neglected tropical diseases reduce to low levels in some countries, policymakers require precise disease estimates to decide whether the set public health targets have been met. At low prevalence levels, traditional statistical methods produce imprecise estimates. More modern geospatial statistical methods can deliver the required level of precision for accurate decision-making. METHODS: Using spatially referenced data from 3567 cluster locations in Ethiopia in the years 2017, 2018 and 2019, we developed a geostatistical model to estimate the prevalence of trachomatous trichiasis and to calculate the probability that the trachomatous trichiasis component of the elimination of trachoma as a public health problem has already been achieved for each of 482 evaluation units. We also compared the precision of traditional and geostatistical approaches by the ratios of the lengths of their 95% predictive intervals. RESULTS: The elimination threshold of trachomatous trichiasis (prevalence ≤ 0.2% in individuals aged ≥15 years) is met with a probability of 0.9 or more in 8 out of the 482 evaluation units assessed, and with a probability of ≤0.1 in 469 evaluation units. For the remaining five evaluation units, the probability of elimination is between 0.45 and 0.65. Prevalence estimates were, on average, 10 times more precise than estimates obtained using the traditional approach. CONCLUSIONS: By accounting for and exploiting spatial correlation in the prevalence data, we achieved remarkably improved precision of prevalence estimates compared with the traditional approach. The geostatistical approach also delivers predictions for unsampled evaluation units that are geographically close to sampled evaluation units. Oxford University Press 2021-11-13 /pmc/articles/PMC9082807/ /pubmed/34791259 http://dx.doi.org/10.1093/ije/dyab227 Text en © World Health Organization, 2021. All rights reserved. The World Health Organization has granted the Publisher permission for the reproduction of this article. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Infectious Disease Amoah, Benjamin Fronterre, Claudio Johnson, Olatunji Dejene, Michael Seife, Fikre Negussu, Nebiyu Bakhtiari, Ana Harding-Esch, Emma M Giorgi, Emanuele Solomon, Anthony W Diggle, Peter J Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia |
title | Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia |
title_full | Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia |
title_fullStr | Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia |
title_full_unstemmed | Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia |
title_short | Model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
Ethiopia |
title_sort | model-based geostatistics enables more precise estimates of neglected
tropical-disease prevalence in elimination settings: mapping trachoma prevalence in
ethiopia |
topic | Infectious Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082807/ https://www.ncbi.nlm.nih.gov/pubmed/34791259 http://dx.doi.org/10.1093/ije/dyab227 |
work_keys_str_mv | AT amoahbenjamin modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT fronterreclaudio modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT johnsonolatunji modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT dejenemichael modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT seifefikre modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT negussunebiyu modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT bakhtiariana modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT hardingeschemmam modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT giorgiemanuele modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT solomonanthonyw modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia AT digglepeterj modelbasedgeostatisticsenablesmorepreciseestimatesofneglectedtropicaldiseaseprevalenceineliminationsettingsmappingtrachomaprevalenceinethiopia |