Cargando…
Synthesis and properties of novel ammonium-based room-temperature gemini ionic liquids
Ammonium-based room-temperature asymmetrical gemini ionic liquids, 1-trimethylammonium-3-(pyridinium)propane bisdicyanamide ([N(111)C(3)Py][DCA](2)) and 1-trimethylammonium-3-(1-methylpiperidinium)propane bisdicyanamide ([N(111)C(3)MPi][DCA](2)) were respectively synthesized and structurally charact...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082928/ https://www.ncbi.nlm.nih.gov/pubmed/35541925 http://dx.doi.org/10.1039/c8ra04127j |
Sumario: | Ammonium-based room-temperature asymmetrical gemini ionic liquids, 1-trimethylammonium-3-(pyridinium)propane bisdicyanamide ([N(111)C(3)Py][DCA](2)) and 1-trimethylammonium-3-(1-methylpiperidinium)propane bisdicyanamide ([N(111)C(3)MPi][DCA](2)) were respectively synthesized and structurally characterized by (1)H NMR and (13)C NMR. Thermal stability of the gemini ionic liquids was determined by thermogravimetric analysis under a pure nitrogen atmosphere. Densities and viscosities of pure GILs and their binary mixtures with acetonitrile (MeCN) were investigated over the entire range of mole fractions at various temperatures, from 288.15 to 333.15 K, under atmospheric pressure. Moreover, the excess molar volumes (V(E)(m)) and the viscosity deviations (Δη) of the binary mixtures were evaluated and well fitted to the Redlich–Kister polynomial expression. The negative values of V(E)(m) and Δη result from strong self-association and interaction between the gemini ionic liquid molecules and MeCN. Results are discussed in terms of molecular interactions and structures. |
---|