Cargando…

A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries

Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charg...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuo, Wang, Chengdong, Dong, Shanmu, Hou, Hongbin, Wang, Ben, Wang, Xiaogang, Chen, Xiao, Cui, Guanglei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084176/
https://www.ncbi.nlm.nih.gov/pubmed/35542720
http://dx.doi.org/10.1039/c8ra05905e
_version_ 1784703554433318912
author Liu, Shuo
Wang, Chengdong
Dong, Shanmu
Hou, Hongbin
Wang, Ben
Wang, Xiaogang
Chen, Xiao
Cui, Guanglei
author_facet Liu, Shuo
Wang, Chengdong
Dong, Shanmu
Hou, Hongbin
Wang, Ben
Wang, Xiaogang
Chen, Xiao
Cui, Guanglei
author_sort Liu, Shuo
collection PubMed
description Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charge–discharge efficiency also results in short cycle-life. In this work, functional air cathodes containing mesoporous tungsten carbide nanoparticles for improving the reversibility of positive reactions in Li–O(2) cells are designed. Mesoporous tungsten carbides are synthesized with mesoporous carbon nitride as the reactive template and carbon source. And mesoporous tungsten carbides in cathode materials display better electrochemical performance in Li–O(2) cells in comparison with mesoporous carbon nitride and hard carbon. Tungsten carbide-1 (WC-1) with larger specific surface area promotes reversible formation and decomposition of Li(2)O(2) at the cathode and lower charge overpotential (about 0.93 V) at 100 mA g(−1), which allows the Li–O(2) cell to run up to 100 cycles. In addition, synergistic interaction between WC-1 and LiI could further decrease the charging overpotentials of Li–O(2) cells and improve the charge–discharge performances of the Li–O(2) cells. These results indicate that mesoporous electrocatalysts can be utilized as promising functional materials for Li–O(2) cells to decrease overpotentials.
format Online
Article
Text
id pubmed-9084176
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90841762022-05-09 A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries Liu, Shuo Wang, Chengdong Dong, Shanmu Hou, Hongbin Wang, Ben Wang, Xiaogang Chen, Xiao Cui, Guanglei RSC Adv Chemistry Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charge–discharge efficiency also results in short cycle-life. In this work, functional air cathodes containing mesoporous tungsten carbide nanoparticles for improving the reversibility of positive reactions in Li–O(2) cells are designed. Mesoporous tungsten carbides are synthesized with mesoporous carbon nitride as the reactive template and carbon source. And mesoporous tungsten carbides in cathode materials display better electrochemical performance in Li–O(2) cells in comparison with mesoporous carbon nitride and hard carbon. Tungsten carbide-1 (WC-1) with larger specific surface area promotes reversible formation and decomposition of Li(2)O(2) at the cathode and lower charge overpotential (about 0.93 V) at 100 mA g(−1), which allows the Li–O(2) cell to run up to 100 cycles. In addition, synergistic interaction between WC-1 and LiI could further decrease the charging overpotentials of Li–O(2) cells and improve the charge–discharge performances of the Li–O(2) cells. These results indicate that mesoporous electrocatalysts can be utilized as promising functional materials for Li–O(2) cells to decrease overpotentials. The Royal Society of Chemistry 2018-08-06 /pmc/articles/PMC9084176/ /pubmed/35542720 http://dx.doi.org/10.1039/c8ra05905e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Liu, Shuo
Wang, Chengdong
Dong, Shanmu
Hou, Hongbin
Wang, Ben
Wang, Xiaogang
Chen, Xiao
Cui, Guanglei
A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title_full A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title_fullStr A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title_full_unstemmed A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title_short A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
title_sort mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in li–o(2) batteries
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084176/
https://www.ncbi.nlm.nih.gov/pubmed/35542720
http://dx.doi.org/10.1039/c8ra05905e
work_keys_str_mv AT liushuo amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangchengdong amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT dongshanmu amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT houhongbin amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangben amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangxiaogang amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT chenxiao amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT cuiguanglei amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT liushuo mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangchengdong mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT dongshanmu mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT houhongbin mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangben mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT wangxiaogang mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT chenxiao mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries
AT cuiguanglei mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries