Cargando…
A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries
Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charg...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084176/ https://www.ncbi.nlm.nih.gov/pubmed/35542720 http://dx.doi.org/10.1039/c8ra05905e |
_version_ | 1784703554433318912 |
---|---|
author | Liu, Shuo Wang, Chengdong Dong, Shanmu Hou, Hongbin Wang, Ben Wang, Xiaogang Chen, Xiao Cui, Guanglei |
author_facet | Liu, Shuo Wang, Chengdong Dong, Shanmu Hou, Hongbin Wang, Ben Wang, Xiaogang Chen, Xiao Cui, Guanglei |
author_sort | Liu, Shuo |
collection | PubMed |
description | Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charge–discharge efficiency also results in short cycle-life. In this work, functional air cathodes containing mesoporous tungsten carbide nanoparticles for improving the reversibility of positive reactions in Li–O(2) cells are designed. Mesoporous tungsten carbides are synthesized with mesoporous carbon nitride as the reactive template and carbon source. And mesoporous tungsten carbides in cathode materials display better electrochemical performance in Li–O(2) cells in comparison with mesoporous carbon nitride and hard carbon. Tungsten carbide-1 (WC-1) with larger specific surface area promotes reversible formation and decomposition of Li(2)O(2) at the cathode and lower charge overpotential (about 0.93 V) at 100 mA g(−1), which allows the Li–O(2) cell to run up to 100 cycles. In addition, synergistic interaction between WC-1 and LiI could further decrease the charging overpotentials of Li–O(2) cells and improve the charge–discharge performances of the Li–O(2) cells. These results indicate that mesoporous electrocatalysts can be utilized as promising functional materials for Li–O(2) cells to decrease overpotentials. |
format | Online Article Text |
id | pubmed-9084176 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90841762022-05-09 A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries Liu, Shuo Wang, Chengdong Dong, Shanmu Hou, Hongbin Wang, Ben Wang, Xiaogang Chen, Xiao Cui, Guanglei RSC Adv Chemistry Lithium–oxygen (Li–O(2)) batteries as promising energy storage devices possess high gravimetric energy density and low emission. However, poor reversibility of electrochemical reactions at the cathode significantly affects the electrochemical properties of nonaqueous Li–O(2) batteries, and low charge–discharge efficiency also results in short cycle-life. In this work, functional air cathodes containing mesoporous tungsten carbide nanoparticles for improving the reversibility of positive reactions in Li–O(2) cells are designed. Mesoporous tungsten carbides are synthesized with mesoporous carbon nitride as the reactive template and carbon source. And mesoporous tungsten carbides in cathode materials display better electrochemical performance in Li–O(2) cells in comparison with mesoporous carbon nitride and hard carbon. Tungsten carbide-1 (WC-1) with larger specific surface area promotes reversible formation and decomposition of Li(2)O(2) at the cathode and lower charge overpotential (about 0.93 V) at 100 mA g(−1), which allows the Li–O(2) cell to run up to 100 cycles. In addition, synergistic interaction between WC-1 and LiI could further decrease the charging overpotentials of Li–O(2) cells and improve the charge–discharge performances of the Li–O(2) cells. These results indicate that mesoporous electrocatalysts can be utilized as promising functional materials for Li–O(2) cells to decrease overpotentials. The Royal Society of Chemistry 2018-08-06 /pmc/articles/PMC9084176/ /pubmed/35542720 http://dx.doi.org/10.1039/c8ra05905e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Liu, Shuo Wang, Chengdong Dong, Shanmu Hou, Hongbin Wang, Ben Wang, Xiaogang Chen, Xiao Cui, Guanglei A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title | A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title_full | A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title_fullStr | A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title_full_unstemmed | A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title_short | A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O(2) batteries |
title_sort | mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in li–o(2) batteries |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084176/ https://www.ncbi.nlm.nih.gov/pubmed/35542720 http://dx.doi.org/10.1039/c8ra05905e |
work_keys_str_mv | AT liushuo amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangchengdong amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT dongshanmu amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT houhongbin amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangben amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangxiaogang amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT chenxiao amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT cuiguanglei amesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT liushuo mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangchengdong mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT dongshanmu mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT houhongbin mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangben mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT wangxiaogang mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT chenxiao mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries AT cuiguanglei mesoporoustungstencarbidenanostructureasapromisingcathodecatalystdecreasesoverpotentialinlio2batteries |