Cargando…
An information-rich sampling technique over spatio-temporal CNN for classification of human actions in videos
We propose a novel video sampling scheme for human action recognition in videos, using Gaussian Weighing Function. Traditionally in deep learning-based human activity recognition approaches, either a few random frames or every k(th) frame of the video is considered for training the 3D CNN, where k i...
Autores principales: | Basha, S. H. Shabbeer, Pulabaigari, Viswanath, Mukherjee, Snehasis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084266/ https://www.ncbi.nlm.nih.gov/pubmed/35572387 http://dx.doi.org/10.1007/s11042-022-12856-6 |
Ejemplares similares
-
Segment-Tube: Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation
por: Wang, Le, et al.
Publicado: (2018) -
Spatio-Temporal Action Detection in Untrimmed Videos by Using Multimodal Features and Region Proposals
por: Song, Yeongtaek, et al.
Publicado: (2019) -
Spatio-temporal classification for polyp
diagnosis
por: González-Bueno Puyal, Juana, et al.
Publicado: (2023) -
Improved Action Recognition with Separable Spatio-Temporal Attention Using Alternative Skeletal and Video Pre-Processing
por: Climent-Pérez, Pau, et al.
Publicado: (2021) -
Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023)