Cargando…
Prediction and prevention of pandemics via graphical model inference and convex programming
Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the...
Autores principales: | Krechetov, Mikhail, Esmaieeli Sikaroudi, Amir Mohammad, Efrat, Alon, Polishchuk, Valentin, Chertkov, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084276/ https://www.ncbi.nlm.nih.gov/pubmed/35534669 http://dx.doi.org/10.1038/s41598-022-11705-8 |
Ejemplares similares
-
Machine learning based integrated scheduling and rescheduling for elective and emergency patients in the operating theatre
por: Eshghali, Masoud, et al.
Publicado: (2023) -
Statistical inference via convex optimization
por: Juditsky, Anatoli, et al.
Publicado: (2020) -
Theory of convex programming
por: Gol′steĭn, E G, et al.
Publicado: (1972) -
Graphical models for inferring single molecule dynamics
por: Bronson, Jonathan E, et al.
Publicado: (2010) -
The graphical brain: Belief propagation and active inference
por: Friston, Karl J., et al.
Publicado: (2017)