Cargando…
Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties
An Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) (Ag@AgBr/K(4)Nb(6)O(17)) photocatalyst was prepared via the oil-in-water self-assembly method. The Ag@AgBr nanoparticles, with average diameters of 20 nm, were uniformly deposited on the K(4)Nb(6)O(17) surface. The as-prepared Ag@AgBr/K(4)Nb(6)O(17) c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084464/ https://www.ncbi.nlm.nih.gov/pubmed/35548019 http://dx.doi.org/10.1039/c8ra03597k |
_version_ | 1784703618175205376 |
---|---|
author | Tian, Lingyu Sun, Kelei Rui, Yulan Cui, Wenquan An, Weijia |
author_facet | Tian, Lingyu Sun, Kelei Rui, Yulan Cui, Wenquan An, Weijia |
author_sort | Tian, Lingyu |
collection | PubMed |
description | An Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) (Ag@AgBr/K(4)Nb(6)O(17)) photocatalyst was prepared via the oil-in-water self-assembly method. The Ag@AgBr nanoparticles, with average diameters of 20 nm, were uniformly deposited on the K(4)Nb(6)O(17) surface. The as-prepared Ag@AgBr/K(4)Nb(6)O(17) composites exhibited high visible light absorption, high photocurrent intensity, and high charge transfer efficiency, thus enhancing the photocatalytic performance for methyl-blue (MB) dye degradation. The Ag@AgBr (20 wt%)/K(4)Nb(6)O(17) composite displayed the highest photocatalytic activity, degrading 96% of the MB solution under visible light irradiation for 60 min, which was 2.3-times and 8.5-times that of the bulk Ag@AgBr and K(4)Nb(6)O(17), respectively. The excellent photocatalytic activity of the Ag@AgBr/K(4)Nb(6)O(17) composites is due to the synergistic effect between Ag@AgBr and K(4)Nb(6)O(17), where the Ag@AgBr nanoparticles not only enhanced visible light absorption efficiency due to the Ag nanoparticles' SPR, but also greatly accelerated the separation of the photogenerated electron–hole pairs. From the UV-vis spectra, the Ag@AgBr nanoparticles greatly extend the composites' visible light absorption. The data collected from photoluminescence (PL), photocurrent and electrochemical impedance spectra (EIS) were consistent and confirmed the rapid separation of charge carriers. Moreover, the composite exhibited a larger specific surface area, which was also beneficial for the photocatalytic activity. In addition, the roles of the radical species were investigated, and the holes and ·O(2)(−) radicals were hypothesized to dominate the photocatalytic process. Based on the characterization analysis and experimental results, a possible photocatalytic mechanism for the enhancement of photocatalytic activity is proposed. |
format | Online Article Text |
id | pubmed-9084464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90844642022-05-10 Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties Tian, Lingyu Sun, Kelei Rui, Yulan Cui, Wenquan An, Weijia RSC Adv Chemistry An Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) (Ag@AgBr/K(4)Nb(6)O(17)) photocatalyst was prepared via the oil-in-water self-assembly method. The Ag@AgBr nanoparticles, with average diameters of 20 nm, were uniformly deposited on the K(4)Nb(6)O(17) surface. The as-prepared Ag@AgBr/K(4)Nb(6)O(17) composites exhibited high visible light absorption, high photocurrent intensity, and high charge transfer efficiency, thus enhancing the photocatalytic performance for methyl-blue (MB) dye degradation. The Ag@AgBr (20 wt%)/K(4)Nb(6)O(17) composite displayed the highest photocatalytic activity, degrading 96% of the MB solution under visible light irradiation for 60 min, which was 2.3-times and 8.5-times that of the bulk Ag@AgBr and K(4)Nb(6)O(17), respectively. The excellent photocatalytic activity of the Ag@AgBr/K(4)Nb(6)O(17) composites is due to the synergistic effect between Ag@AgBr and K(4)Nb(6)O(17), where the Ag@AgBr nanoparticles not only enhanced visible light absorption efficiency due to the Ag nanoparticles' SPR, but also greatly accelerated the separation of the photogenerated electron–hole pairs. From the UV-vis spectra, the Ag@AgBr nanoparticles greatly extend the composites' visible light absorption. The data collected from photoluminescence (PL), photocurrent and electrochemical impedance spectra (EIS) were consistent and confirmed the rapid separation of charge carriers. Moreover, the composite exhibited a larger specific surface area, which was also beneficial for the photocatalytic activity. In addition, the roles of the radical species were investigated, and the holes and ·O(2)(−) radicals were hypothesized to dominate the photocatalytic process. Based on the characterization analysis and experimental results, a possible photocatalytic mechanism for the enhancement of photocatalytic activity is proposed. The Royal Society of Chemistry 2018-08-17 /pmc/articles/PMC9084464/ /pubmed/35548019 http://dx.doi.org/10.1039/c8ra03597k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Tian, Lingyu Sun, Kelei Rui, Yulan Cui, Wenquan An, Weijia Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title | Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title_full | Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title_fullStr | Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title_full_unstemmed | Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title_short | Facile synthesis of an Ag@AgBr nanoparticle-decorated K(4)Nb(6)O(17) photocatalyst with improved photocatalytic properties |
title_sort | facile synthesis of an ag@agbr nanoparticle-decorated k(4)nb(6)o(17) photocatalyst with improved photocatalytic properties |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084464/ https://www.ncbi.nlm.nih.gov/pubmed/35548019 http://dx.doi.org/10.1039/c8ra03597k |
work_keys_str_mv | AT tianlingyu facilesynthesisofanagagbrnanoparticledecoratedk4nb6o17photocatalystwithimprovedphotocatalyticproperties AT sunkelei facilesynthesisofanagagbrnanoparticledecoratedk4nb6o17photocatalystwithimprovedphotocatalyticproperties AT ruiyulan facilesynthesisofanagagbrnanoparticledecoratedk4nb6o17photocatalystwithimprovedphotocatalyticproperties AT cuiwenquan facilesynthesisofanagagbrnanoparticledecoratedk4nb6o17photocatalystwithimprovedphotocatalyticproperties AT anweijia facilesynthesisofanagagbrnanoparticledecoratedk4nb6o17photocatalystwithimprovedphotocatalyticproperties |