Cargando…
Deep learning kidney segmentation with very limited training data using a cascaded convolution neural network
BACKGROUND: Deep learning segmentation requires large datasets with ground truth. Image annotation is time consuming and leads to shortages of ground truth data for clinical imaging. This study is to investigate the feasibility of kidney segmentation using deep learning convolution neural network (C...
Autores principales: | Guo, Junyu, Odu, Ayobami, Pedrosa, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084530/ https://www.ncbi.nlm.nih.gov/pubmed/35533181 http://dx.doi.org/10.1371/journal.pone.0267753 |
Ejemplares similares
-
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sadanandan, Sajith Kecheril, et al.
Publicado: (2017) -
Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
por: Stember, J. N., et al.
Publicado: (2019) -
Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
por: Ali, Mohammed A. S., et al.
Publicado: (2021) -
Training Convolutional Networks for Prostate Segmentation With Limited Data
por: SAUNDERS, SARA L., et al.
Publicado: (2021) -
Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
por: Bousabarah, Khaled, et al.
Publicado: (2020)