Cargando…
Predicting Voltammetry Using Physics-Informed Neural Networks
[Image: see text] We propose a discretization-free approach to simulation of cyclic voltammetry using Physics-Informed Neural Networks (PINNs) by constraining a feed-forward neutral network with the diffusion equation and electrochemically consistent boundary conditions. Using PINNs, we first predic...
Autores principales: | Chen, Haotian, Kätelhön, Enno, Compton, Richard G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084599/ https://www.ncbi.nlm.nih.gov/pubmed/35007069 http://dx.doi.org/10.1021/acs.jpclett.1c04054 |
Ejemplares similares
-
Rotating Disk
Electrodes beyond the Levich Approximation:
Physics-Informed Neural Networks Reveal and Quantify Edge Effects
por: Chen, Haotian, et al.
Publicado: (2023) -
Experimental Voltammetry Analyzed Using Artificial
Intelligence: Thermodynamics and Kinetics of the Dissociation of Acetic
Acid in Aqueous Solution
por: Chen, Haotian, et al.
Publicado: (2022) -
Recent Advances in Voltammetry
por: Batchelor-McAuley, Christopher, et al.
Publicado: (2015) -
Reversible
Cyclic Voltammetry and Non-Unity Stoichiometry:
The Ag/AgBr/Br(–) Redox Couple
por: Chen, Haotian, et al.
Publicado: (2022) -
Understanding single enzyme activity via the nano-impact technique
por: Lin, Chuhong, et al.
Publicado: (2017)