Cargando…

MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDG...

Descripción completa

Detalles Bibliográficos
Autores principales: Toledo, Andrea, Letellier, Mathieu, Bimbi, Giorgia, Tessier, Béatrice, Daburon, Sophie, Favereaux, Alexandre, Chamma, Ingrid, Vennekens, Kristel, Vanderlinden, Jeroen, Sainlos, Matthieu, de Wit, Joris, Choquet, Daniel, Thoumine, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084894/
https://www.ncbi.nlm.nih.gov/pubmed/35532105
http://dx.doi.org/10.7554/eLife.75233
_version_ 1784703699516391424
author Toledo, Andrea
Letellier, Mathieu
Bimbi, Giorgia
Tessier, Béatrice
Daburon, Sophie
Favereaux, Alexandre
Chamma, Ingrid
Vennekens, Kristel
Vanderlinden, Jeroen
Sainlos, Matthieu
de Wit, Joris
Choquet, Daniel
Thoumine, Olivier
author_facet Toledo, Andrea
Letellier, Mathieu
Bimbi, Giorgia
Tessier, Béatrice
Daburon, Sophie
Favereaux, Alexandre
Chamma, Ingrid
Vennekens, Kristel
Vanderlinden, Jeroen
Sainlos, Matthieu
de Wit, Joris
Choquet, Daniel
Thoumine, Olivier
author_sort Toledo, Andrea
collection PubMed
description MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
format Online
Article
Text
id pubmed-9084894
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-90848942022-05-10 MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior Toledo, Andrea Letellier, Mathieu Bimbi, Giorgia Tessier, Béatrice Daburon, Sophie Favereaux, Alexandre Chamma, Ingrid Vennekens, Kristel Vanderlinden, Jeroen Sainlos, Matthieu de Wit, Joris Choquet, Daniel Thoumine, Olivier eLife Cell Biology MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors. eLife Sciences Publications, Ltd 2022-05-09 /pmc/articles/PMC9084894/ /pubmed/35532105 http://dx.doi.org/10.7554/eLife.75233 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication (https://creativecommons.org/publicdomain/zero/1.0/) .
spellingShingle Cell Biology
Toledo, Andrea
Letellier, Mathieu
Bimbi, Giorgia
Tessier, Béatrice
Daburon, Sophie
Favereaux, Alexandre
Chamma, Ingrid
Vennekens, Kristel
Vanderlinden, Jeroen
Sainlos, Matthieu
de Wit, Joris
Choquet, Daniel
Thoumine, Olivier
MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title_full MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title_fullStr MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title_full_unstemmed MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title_short MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
title_sort mdgas are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084894/
https://www.ncbi.nlm.nih.gov/pubmed/35532105
http://dx.doi.org/10.7554/eLife.75233
work_keys_str_mv AT toledoandrea mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT letelliermathieu mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT bimbigiorgia mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT tessierbeatrice mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT daburonsophie mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT favereauxalexandre mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT chammaingrid mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT vennekenskristel mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT vanderlindenjeroen mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT sainlosmatthieu mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT dewitjoris mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT choquetdaniel mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior
AT thoumineolivier mdgasarefastdiffusingmoleculesthatdelayexcitatorysynapsedevelopmentbyalteringneuroliginbehavior