Cargando…
Superb adsorption capacity of biochar derived from leather shavings for Congo red
Research on biochar for removal of dyes has been a hot topic because of its excellent eco-friendly and economical properties. In this study, leather shavings biochar (LSB) with high adsorption capacity was prepared and tested with Congo red as a model dye for adsorption. The research results show th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085273/ https://www.ncbi.nlm.nih.gov/pubmed/35547275 http://dx.doi.org/10.1039/c8ra06370b |
_version_ | 1784703777104723968 |
---|---|
author | Huang, Xueping Yu, Fan Peng, Qifan Huang, Yaqin |
author_facet | Huang, Xueping Yu, Fan Peng, Qifan Huang, Yaqin |
author_sort | Huang, Xueping |
collection | PubMed |
description | Research on biochar for removal of dyes has been a hot topic because of its excellent eco-friendly and economical properties. In this study, leather shavings biochar (LSB) with high adsorption capacity was prepared and tested with Congo red as a model dye for adsorption. The research results show that the as-prepared biochar exhibits a porous structure, with a high specific surface area (2365 m(2) g(−1)), and it would be beneficial for removing Congo red from effluents. More interestingly, adsorption capacity of LSB for Congo red was enhanced by chromium compounds on the surface of biochar through chelation and electrostatic interactions. Chelation occured between the chromium compounds and amino groups of Congo red. Adsorption data for Congo red on the biochar were successfully described by Langmuir isotherm and the pseudo-second order kinetics model. Langmuir maximum adsorption capacity of LSB at 30 °C reached 1916 mg g(−1), which is much higher than that of conventional activated carbon (AC). Recycling experiment shows that LSB has a potential market for removing Congo red. |
format | Online Article Text |
id | pubmed-9085273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90852732022-05-10 Superb adsorption capacity of biochar derived from leather shavings for Congo red Huang, Xueping Yu, Fan Peng, Qifan Huang, Yaqin RSC Adv Chemistry Research on biochar for removal of dyes has been a hot topic because of its excellent eco-friendly and economical properties. In this study, leather shavings biochar (LSB) with high adsorption capacity was prepared and tested with Congo red as a model dye for adsorption. The research results show that the as-prepared biochar exhibits a porous structure, with a high specific surface area (2365 m(2) g(−1)), and it would be beneficial for removing Congo red from effluents. More interestingly, adsorption capacity of LSB for Congo red was enhanced by chromium compounds on the surface of biochar through chelation and electrostatic interactions. Chelation occured between the chromium compounds and amino groups of Congo red. Adsorption data for Congo red on the biochar were successfully described by Langmuir isotherm and the pseudo-second order kinetics model. Langmuir maximum adsorption capacity of LSB at 30 °C reached 1916 mg g(−1), which is much higher than that of conventional activated carbon (AC). Recycling experiment shows that LSB has a potential market for removing Congo red. The Royal Society of Chemistry 2018-08-22 /pmc/articles/PMC9085273/ /pubmed/35547275 http://dx.doi.org/10.1039/c8ra06370b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Huang, Xueping Yu, Fan Peng, Qifan Huang, Yaqin Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title | Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title_full | Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title_fullStr | Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title_full_unstemmed | Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title_short | Superb adsorption capacity of biochar derived from leather shavings for Congo red |
title_sort | superb adsorption capacity of biochar derived from leather shavings for congo red |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085273/ https://www.ncbi.nlm.nih.gov/pubmed/35547275 http://dx.doi.org/10.1039/c8ra06370b |
work_keys_str_mv | AT huangxueping superbadsorptioncapacityofbiocharderivedfromleathershavingsforcongored AT yufan superbadsorptioncapacityofbiocharderivedfromleathershavingsforcongored AT pengqifan superbadsorptioncapacityofbiocharderivedfromleathershavingsforcongored AT huangyaqin superbadsorptioncapacityofbiocharderivedfromleathershavingsforcongored |