Cargando…

Exploring the Mechanism of Weikang Keli in Inhibiting Gastric Cancer through the MAPK Signaling Pathway: Based on Network Pharmacology and Experimental Verification

BACKGROUND: With a high incidence and limited treatments, gastric cancer (GC) seriously threatens human health worldwide. Weikang Keli (WK) is a compound prescription summed up from clinical experience. In our previous studies, WK has been proved to exert antitumor effects. However, there are no res...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Xiang, Liu, Yuping, Jiang, Cuihua, Sun, Yue, Zhang, Qiyang, Gu, Jialin, Huo, Jiege, Hu, Canhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085321/
https://www.ncbi.nlm.nih.gov/pubmed/35547655
http://dx.doi.org/10.1155/2022/2662288
Descripción
Sumario:BACKGROUND: With a high incidence and limited treatments, gastric cancer (GC) seriously threatens human health worldwide. Weikang Keli (WK) is a compound prescription summed up from clinical experience. In our previous studies, WK has been proved to exert antitumor effects. However, there are no research studies to discuss and verify its mechanism as a compound. OBJECTIVE: The aim of the study is to explore the potential molecular mechanism of WK in the treatment of GC with the aid of network pharmacology and verify it through experiments. METHODS: Related databases were used to obtain genes and targets of WK and gastric cancer. A protein-protein interaction (PPI) network is constructed and visualized by Cytoscape 3.7.2. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to analyze core targets. The cell viability of MFC and BGC-823 cells was determined by CCK8. Immunofluorescence was used to determine autophagy of GC cells. Moreover, the effect of WK on the MAPK signaling pathway in GC cells and tumor tissues of ICR mice was detected by Western blot. RESULTS: A total of 106 cross targets of WK and GC were obtained. According to the enrichment analysis of GO and KEGG, we target the MAPK signaling pathway to discuss the mechanism of WK on GC. Cell experiments proved that WK inhibited the viability of gastric cancer cells in a dose-dependent and time-dependent manner. Autophagosome aggregation and an increase in the expression of an autophagy marker protein LC3-II can also be observed in WK groups. Further animal experiments showed that the tumor inhibition rate of WK showed a dose-effect relationship. Moreover, the expressions of p-JNK, p-p38, and p-ERR1/2 proteins in the MAPK signaling pathway in WK Group were downregulated both in the cell and animal experiments, compared with the blank control group. CONCLUSION: WK showed an explicit antitumor effect on gastric cancer through the MAPK signaling pathway, and the curative effect varies in different concentrations. Besides, in model mice, the antitumor effect of high-dose WK group is close to that of platinum. This study provided a theoretical basis for the application of WK in the clinical treatment of gastric cancer.