Cargando…
Dealing with distribution mismatch in semi-supervised deep learning for COVID-19 detection using chest X-ray images: A novel approach using feature densities
In the context of the global coronavirus pandemic, different deep learning solutions for infected subject detection using chest X-ray images have been proposed. However, deep learning models usually need large labelled datasets to be effective. Semi-supervised deep learning is an attractive alternat...
Autores principales: | Calderon-Ramirez, Saul, Yang, Shengxiang, Elizondo, David, Moemeni, Armaghan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085448/ https://www.ncbi.nlm.nih.gov/pubmed/35573166 http://dx.doi.org/10.1016/j.asoc.2022.108983 |
Ejemplares similares
-
Correcting data imbalance for semi-supervised COVID-19 detection using X-ray chest images
por: Calderon-Ramirez, Saul, et al.
Publicado: (2021) -
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica
por: Calderon-Ramirez, Saul, et al.
Publicado: (2022) -
Potential diagnosis of COVID-19 from chest X-ray and CT findings using semi-supervised learning
por: Sahoo, Pracheta, et al.
Publicado: (2021) -
Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images
Publicado: (2021) -
Localization of lung abnormalities on chest X-rays using self-supervised equivariant attention
por: D’Souza, Gavin, et al.
Publicado: (2022)